
Lecture 3 - Applications 

Quintessence and K-essence  

DE/DM unification  

Tachyon condensate in a Braneworld 

 



Quintessence 

Field theory description of a perfect fluid if X>0 
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The so called coincidence problem is somewhat ameliorated in  

quintessence  – a canonical scalar field  with selfinteraction  

effectively providing a model for dark-energy and accelerating 

expansion (comparable to slow roll inflation) today  
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A suitable choice of  V(φ) yields a desired  

cosmology, or vice versa: from a desired  equation  

of state p=p(ρ) one can derive  the Lagrangian of 

 the corresponding scalar field theory   
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  Phantom quintessence 

Phantom energy is a substance with negative pressure 

such that |p| exceeds the energy density  so that the null 

energy condition (NEC) is violated, i.e., p+ρ<0. Phantom 

quintessence is a scalar field with a negative kinetic term 
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Obviously, for  X>0 we have p+ρ<0 which demonstrates a 

violation of NEC! This model predicts a catastrophic end of 

the Universe, the so-called Big Rip - the total collapse of all 

bound systems. 



k-essence 

k-essence is a generalized quintessence which was first 

introduced as a model for inflation . A minimally coupled 

k-essence model is described by  
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where L is the most general Lagrangian, which depends 

on a single scalar field  of dimension of length , and on 

the dimensionless quantity                     For  X>0 , the 

energy momentum tensor  takes the perfect fluid form 

where 
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Kinetic k-essence The Lagrangian is a function of X 

only. In this case 

Examples 
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To this class belong the ghost condensate  
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and the scalar Born-Infeld model  
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Ghost condensate model 

de-Sitter de-Sitter 

Slow roll towards 

 the minimum 



Exercise No 14: For a general kinetic k-essence, i.e. when L= L(X) 

using Hamilton equations show that                            ,  where C is a 

constant 
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Exercise No 15: For a ghost condensate model with Lagrangian 

L=  B2 (X2-1)  

a) express X, L and H  in terms of π  

b) find a as a function of t ,  

c) using Hamilton equations find  φ as a function of a 



 DE/DM Unification – Quartessence 

The astrophysical and cosmological observational data 

can be accommodated by combining baryons with 

conventional CDM and a simple cosmological constant  

providing DE. This ΛCDM model, however, faces the  fine 

tuning and coincidence problems associated to Λ. 

Another interpretation of this data is that DM/DE are different 

manifestations of a common structure. The general class of 

models, in which a unification of DM and DE is achieved 

through a single entity, is often referred to as  quartessence. 

Most of the unification scenarios that have recently been 

suggested are based on k-essence  type of models including 

Ghost Condensate, various variants of the Chaplygin Gas 



Chaplygin Gas 

An exotic fluid with an equation of state 

 

 

 

The first definite model for a dark matter/energy  

unification 

 
      A. Kamenshchik, U. Moschella, V. Pasquier,  PLB 511 (2001)   

      N.B., G.B. Tupper, R.D. Viollier, PLB 535 (2002)   

      J.C. Fabris, S.V.B. Goncalves, P.E. de Souza, GRG 34 (2002)  
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This  yields the Dirac-Born-Infeld type of theory  

Consider a 3-brane in 4+1 dim. Bulk. We can choose the bulk 

coordinates such that X μ =x μ, μ=0,..3, and let  the fifth coordinate  

X 4≡ θ be normal to the brane.  In the simplest case (no warp factor 

dependent on the 5th coordinate) the bulk line element is  
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Exercise No 16: Derive SDBI (see Exerc. No 12) 
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The Chaplygin gas model is equivalent to (scalar) 

Born-Infeld description of a D-brane: 



Scalar Born-Infeld theory 
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Identifying 
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We obtain the Chaplygin gas equation of state  
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In a homogeneous model the conservation equation yields the 

Chaplygin gas density as a function of the scale factor a 

 

 

 

 

 

where b is an integration constant.  
 

 

 
The Chaplygin gas thus interpolates between dust (ρ ~ a -3 ) at high 

redshifts and a cosmological constant (ρ ~ σ) today and hence yields 

a correct homogeneous cosmology 

Exercise No 17: Derive (37) using energy-momentum conservation 
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Exercise No 18: For the scalar Born-Infeld theory with L= - σ(1-X)1/2  

a) express X, L and H  in terms of π  

b) Find t as a function of a, and show that  a grows exponentially for 

large t 

c) using Hamilton equations find  φ as a function of a in terms of the 

Gauss hypergeometric function 2F1 

d) Using properties of 2F1 show the following asymptotic behavior 
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Problems with Nonvanishing Sound Speed 

     To be able to claim that a field theoretical model actually 

achieves unification, one must be assured that initial 

perturbations can evolve into a deeply nonlinear regime to 

form a gravitational condensate of superparticles that can 

play the role of CDM. The inhomogeneous Chaplygin gas   

based on a Zel'dovich type approximation has been 

proposed,  

           N.B., G.B. Tupper, R.D. Viollier, PLB 535 (2002)  

     and the picture has emerged that on caustics, where the 

density is high, the fluid behaves as cold dark matter, 

whereas in voids, w=p/ ρ is driven to the lower bound -1 

producing 

     acceleration as dark energy. In fact, for this issue, the usual 

Zel’dovich approximation has the shortcoming that the effects 

of finite sound speed are neglected. 



     In fact, all models that unify DM and DE face the 

problem of  sound speed related to the well-known 

Jeans instability. A fluid with a nonzero sound speed 

has a characteristic scale below which the pressure 

effectively opposes gravity. Hence the perturbations of 

the scale smaller than the sonic horizon will be 

prevented from growing.  

•  Soon after the Chaplygin gas was proposed as a 

model of unification it has been shown that the naive  

model does not reproduce the  mass power spectrum  

            H.B. Sandvik et al PRD 69 (2004)  

     and the CMB 

            D. Carturan and F. Finelli,  PRD 68 (2003); 

                L. Amendola et JCAP 07 (2003)  

 



α<0 

α>0 α =0 

Power spectrum for  p=-A/ρα for various α 

H.B. Sandvik et al, PRD 2004 



CMB spectrum for p=-A/ρα for various α 

L. Amendola et al, JCAP 2003 



   The physical reason is a nonvanishing sound  speed. 

Although  the adiabatic speed of sound 

 

 

   
is small until a  ~ 1, the accumulated comoving size of  

the acoustic horizon  

 

 

    
reaches Mpc scales by redshifts of about z  ~ 20,  thus 

frustrating the structure formation at galactic and 
subgalactic scales. This may be easily demonstrated in a 
simple spherical model. 

N.B., R. Lindebaum, G.B. Tupper, R.D. Viollier, JCAP 0411 (2003)    
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 Generalized Chaplygin Gas 

Another model was proposed in an attempt to solve the 

structure formation problem and has gained a wide 

popularity. The generalized Chaplygin gas is defined as  
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A
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The additional parameter does afford greater flexibility: e.g. 

for small α the sound horizon                         and thus by fine 

tuning α<10-5, the data can be perturbatively accommodated 
0

2/Hads 

 M.C. Bento, O. Bertolami, and A.A. Sen, PRD 66 (2002) 



Other modifications 
 

• The generalized Chaplygin gas in a modified gravity 
approach, reminiscent of Cardassian models  

  

           
         

        T. Barreiro and A.A. Sen, PRD  70 (2004) 

 

• A deformation of the Chaplygin gas –  Milne-Born-Infeld 
theory  

 

 

        M. Novello, M. Makler, L.S. Werneck and C.A. Romero, PRD 71 (2005) 

 

• Variable Chaplygin gas 
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 Tachyon Condensate 

 
The failure of the simple Chaplygin gas (CG) does not exhaust 

all the possibilities for quartessence. The Born-Infeld 

Lagrangian  is a special case of the string-theory inspired 

tachyon Lagrangian in which the constant A is replaced by a 

potential  
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Tachyon models are a particular case of k-essence. It was 

noted in that (in the FRW cosmology), the tachyon model is 

described by the CG equation of state  in which the constant A  

is replaced by a function of the cosmological scale factor                                

                so the model was dubbed “variable Chaplygin gas”.  ~ np a 

Zong-Kuan Guo et al astro-ph/0506091, PLB (2007)  



A preliminary analysis of a unifying model based on the 

tachyon type Lagrangian has been carried out in 

 

 for a potential of the form  

N.B., G.B. Tupper, R.D. Viollier, PRD 80 (2009) 

n=0 gives the  Dirac-Born-Infeld description of a D-brane  

- equivalent to the Chaplygin gas 

It  may be shown that  the model with n≠0 effectively behaves 

as a variable Chaplygin gas, with                         .  The much 

smaller sonic horizon                              enhances condensate 

formation by 2 orders of magnitude over the simple Chaplygin 

gas. Hence this type of model may salvage the quartessence 
scenario. 
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Cosmological evolution of the tachyon condensate 

In Lecture 2 we have derived a tachyon Lagrangian of the form 

in the context of a dynamical brane moving in a  4+1 background with a 

general warp 
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The field θ is identified with the 5-th coordinate z and the potential is related 

 to the warp  



Naw we assume our Braneworld to be a spatially flat  FRW  universe 

with line element 
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The LagrangianL is then 

 – cosmological scale ( )a t

where the conjugate momentum π   is related to θ  and its time 

derivative via 
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The Hamiltonian corresponding to L is easily derived and is very simple 
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The Hamilton equations derived previously   
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Exercise No 19: Derive (40) using (38) and (39) 

(39) 

Where H is the Hubble constant in BW cosmology  
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Of special physical importance is the equation of state 
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Consider as an example the tachyon potential of the form 

( ) nV k  

The model can be solved analytically for specific powers n in two cases:  

1) In the low energy regime (relevant for  today’s cosmology)  

the analytical solution may be found for n=2 

2 )In the high energy regime (relevant  during the slow roll period  

of  inflation) the analytical solution may be found for n=1 

It is convenient to put the equations in dimensionless form. We  

rescale all dimensionful variables as 
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The potential becomes simply                    and Hamilton equations 

read 
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L.R. Abramo and F. Finelli, PLB 575 (2003) 
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where we have introduced a dimensionless coupling constant  



We will try to solve Hamilton’s equations by an ansatz:      

( ) m nc   

from which we find 

This, together with the first Hamilton equation 

yields 



We will seek a solution assuming  three scenarios  

a)m=0, b)m>0 and  c)m<0      

The physicall meaning of these three scenarios can be seen by looking 

at the equation of state 

a)m=0               w= -const   –  some form of dark energy 

a)m>0              for large θ  w → 0  – some form of pressureless 

matter or dust    
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a)m<0              for large θ  w →  -1  – de Sitter dark energy 

(cosmological constant like)   



 1)The low energy regime (relevant for today’s cosmology) 

 In this case  we have                      (or              )  so we can neglect 

the quadratic correction in the first Friedmann equation 
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Then the second Hamilton equation yields an identity 

Exercise No 20: Derive (42a,b) using Hamilton’s equations 

(42a) 

We will distingush two regimes: 

 2)The high energy regime (relevant for the early cosmology) 

  

In this case  we have                      (or              )  so  the quadratic 

correction in the first Friedmann equation dominates and we find 

another identity 
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a)m=0 

There exist a solution to (42b) provided n=2 in which case we find 
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Exercise No 21: Derive (43), (44) and (45) 
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1)The low energy regime 
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a)m>0 

The analytic solution cannot be found. However, the identity (42) can 

be satisfied in the asymptotic regime of large  θ.  Eq. (42) simplifies  
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The solution exists provided  m=n-2 so we must have n>2 in which 

case we find 
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This behavior is typical of dust! 

Exercise No 22: Derive (46), (47), (48) and (49) 
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a)m<0 

The analytic solution cannot be found. Again, the identity (42) can be 

satisfied in the asymptotic regime of large  θ.  In this case Eq. (42) 

becomes  

The solution exists provided  m=n/2-1 so we must have n<2 in which 

case we find 
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This is a “quasi de Sitter” and becomes de Sitter for n=0 

Exercise No 23: Derive (50)-(53) 
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(52) 

L.R. Abramo and F. Finelli, PLB 575 (2003) 



a)m=0 

There exist a solution to (42b) provided n=1 in which case we find 
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Exercise No 24: Derive (54), (55) and (56) 
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2)The high energy regime 
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Exercise No 25: Derive asymptotic behavior (large θ) in the high 

energy regime  for m>0 and m<0 from (42b) following the procedure 

outlined for the low energy regime,  





Thomas-Fermi correspondence 

 

Complex scalar field  

theories (canonical or  

phantom) 

 

Kinetic k-essence type 

 of models 

Under reasonable assumptions in the cosmological  

context there exist an equivalence  



Consider 

 

  

 

Thomas-Fermi approximation 

 

 

           TF Lagrangian 
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Equations of motion for φ and θ 

                          

 

 

 

We now define the potential W(X) through a Legendre 

transformation 
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 correspondence 

Complex scalar FT 

 

 

 

Eqs. of motion 

Kinetic k-essence FT 

 

 

 

Eq. of motion 

 

Parametric eq. of state 
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Current conservation 

Klein-Gordon current 

 

 

U(1) symmetry 

kinetic k-essence current 

 

 

shift symmetry 
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Example: Quartic potential 

Scalar field potential           

 

        Kinetic k-essence 
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Example: Chaplygin gas 

Scalar field potential           
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Easy to calculate using the present observed fractions of 

matter, radiation and vacuum energy.  

For a spatially flat Universe from the first Friedmann 

equation and energy conservation we have 
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Age of the Universe is then 

Age of the Universe 

13.78GyrT


