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Gab – metric in the bulk 

Xa – coordinates in the bulk;  

τ  – synchronous time coordinate (G00=1) 
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PARTICLE is a 0+1-dimdimensional object the dynamics 

of which in d+1-dimensional bulk is described by the  

relativistic pointlike-particle action 
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Gab – metric in the bulk 

Xa – coordinates in the bulk;  

s0≡τ  – timelike coordinate on the string sheet 

s1≡σ – spacelike coordinate on the string sheet  

  

where gαβ is induced metric (“pull back”) 

Strings and (Mem)Branes 
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STRING is a 1+1-dimdimensional object the dynamics of 

which in d+1-dimensional bulk is described by the 

Nambu-Goto  action (generalization of the relativistic 

particle action) 
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Xa – coordinates in the bulk  

        a,b=0,1,2,3,4 

xμ – coordinates on the brane 

        μ,ν=0,1,2,3  

Nambu-Goto action for a 3-brane embedded in a 

4+1 dim space-time (bulk) 

abG – metric in the bulk 
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p-BRANE is a p+1-dim. object that generalizes the 

concept of  membrane (2-brane) or string (1-brane)  

σ –  brane tension  

 – induced metric 



Braneworld universe 

Braneworld universe is based on the scenario in which 

matter is confined on a brane moving in the higher 

dimensional bulk with only gravity allowed to propagate 

in the bulk. 

We will consider the Randall-Sundrum scenario with a 

braneworld embedded in a 5-dim asymptotically Anti de 

Sitter space (AdS5) 

 

 N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429 (1998) 

 I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. 

B 436 (1998) 

 L. Randall and R. Sundrum,  Phys. Rev. Lett. 83 (1999) 3370 (RS I) 

 L. Randall and R. Sundrum,  Phys. Rev. Lett. 83 (1999) 4690 (RS II) 



RS I was proposed as a solution to the hierarchy 

problem, in particular between the Planck scale MPl ~ 

1019 GeV and the electroweak scale MEW ~ 103 GeV  

 

RS I  is a 5-dim. universe with AdS5 geometry containing 

two 4-dim. branes with opposite brane tensions 

separated in the 5th dimension. 

 

The observer is placed on the negative tension brane 

and the separation is such that the strength of gravity on 

observer’s brane is equal to the observed 4-dim. 

Newtonian gravity. 

 

 First Randall-Sundrum model (RS I) 
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 Observers reside on the negative tension brane at  y=l  

y l

0 
0

The coordinate position y=l of the negative tension brane 

serves as a compactification radius so that the effective 

compactification scale is   c 1/ l 

0y 



The conventional approach to the hierarchy problem is to  assume  n 

compact extra dimensions with volume Vn  

If  their size is large enough compared to the Planck scale, i.e., if  

 

 
such a scenario may explain the large mass hierarchy between the 

electroweak scale MEW  and the fundamental scale M of 4+n gravity. 

In the simplest case, when the 4+n dim. spacetime is a product of a 4-

dim. spacetime with an n-dim. compact space, one finds  
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In this way the fundamental 4+n scale M could be of the order of MEW  

if the compactification scale satisfies 
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Unfortunately, this introduces a new hierarchy μc << MEW   



Another problem is that there exist a lower limit on the fundamental 

scale M  determined by null results in table-top experiments to test 

for deviations from Newton’s law in 4 dimensions, U ~1/ r. These 

experiments currently probe sub-millimeter scales, so that 
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Stronger bounds for brane-worlds with compact flat extra dimensions 

can be derived from null results in particle accelerators and in high-

energy astrophysics 
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In contrast, RS brane-worlds do not rely on 

compactification to localize gravity at the brane, but on the 

curvature of the bulk (“warped compactification”). What 

prevents gravity from ‘leaking’ into the extra dimension at 

low energies is a negative bulk cosmological constant 

Λ5 acts to “squeeze” the gravitational field closer to the brane. 

One can see this  in Gaussian normal coordinates Xa = (xμ,y)  

on the brane at y = 0, for which the AdS5 metric takes the form 
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Warp factor 



The Planck scale is related to  the fundamental scale as 
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So that MPl depends only weakly on l in the limit of large kl. 

However, any mass parameter m0 on the observer’s brane 

in the fundamental 5-dim. theory will correspond to the 

physical mass 

0

klm e m

If kl is of order 10 – 15, this mechanism produces TeV physical 

mass scales from fundamental mass parameters not far from 

the Planck scale 1019 GeV. In this way we do not require large 

hierarchies among the fundamental parameters  

                           m0, k, M, μc=1/l  



In RSII  observers reside on the positive tension brane at  y=0 and the 

negative tension brane is pushed off to infinity in the fifth dimension. 

We shall shortly demonstrate that in this model the Planck mass scale 

is determined by the curvature of the 5-dimensional space-time 1/k 

and the 5-dim fundamental scale M   

 

 

 
The inverse curvature k serves as the compactification scale and 

hence the model provides an alternative to compactification.  

Second Randall-Sundrum model (RS II) 
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Long et al, Nature  421  (2003). 

RSII brane-world does not rely on compactification to localize gravity at 

the brane, but on the curvature of the bulk (“warped compactification”). 

The negative cosmological constant Λ(5) acts to “squeeze” the 

gravitational field closer to the brane. One can see this  in Gaussian 

normal coordinates on the brane at y = 0, for which the AdS5 metric 

takes the form 

  

RS II was proposed as an alternative to compactification of extra 

dimensions. If extra dimensions were large that would yield 

unobserved modification of Newton’s gravitational law.  Eperimental 

bound on the volume of n extra dimensions 

warp factor 

Second Randall-Sundrum model (RS II) 

L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) 
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“Sidedness” 

In the original RSII model one assumes the Z2 symmetry 

  

 

so the region                   is identied with                      with the observer brane 

at the fixed point z = zbr. The braneworld is sitting between two patches of 

AdS5, one on either side, and is therefore dubbed “two-sided”. In contrast, in 

the “one-sided” RSII model the region                    is simply cut off.  
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As before, the 5-dim bulk is ADS5 with line element 
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In RSII  observers reside on the positive tension brane at  

y=0 and the negative tension brane is pushed off to 

infinity in the fifth dimension. 



AdS bulk is a  space-time with negative cosmological 

constant: 

Various coordinate representations: 

Fefferman-Graham coordinates 

Gaussian normal coordinates 

ℓ - curvature radius of AdS5  
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Schwarzschild  coordinates (static, spherically symmetric) 
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RS model is a 4+1-dim. universe with AdS5  geometry containing two 

3-branes with opposite brane tensions separated in the 5th dimension.  

The bulk action is given by 

bulk GH br1 br2S S S S S   

The Gibbons-Hawking boundary term is given by an integral over the 

brane hypersurface Σ 
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where Λ5 is the negative bulk cosmological constant related to 

the AdS curvature radius as 

Derivation of the RSII model 
See Appendix of N.B., Phys. Rev. D 93, 

066010 (2016)  arXiv:1511.07323 



where the quantity K is the trace of the extrinsic curvature tensor 

Kab defined as 

;

c d

ab a b d cK h h n

where na is a unit vector normal to the brane pointing towards 

increasing z, hab is the induced metric 

, 0,1,2,3,4ab ab a bh G n n a b  

and h=det hμν is its determinant, μ,ν=0,1,2,3   

The brane action for each brane is given by the Nambu-Goto  

action 
4
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Observers reside on the positive tension brane at y=0. The 

observer total action (including matter) is 



The basic equations are the bulk field equations outside the brane 

and junction conditions 

where the energy momentum tensor Tμ
ν= diag (ρ, -p,-p,-p)   

describes matter on the brane and [[f]] denotes the discontinuity of a 

function f(z) across the brane, i.e., 

To derive the RSII model solution it is convenient to use Gaussian 

normal coordinates xa = (xμ , y) with the fifth coordinate y related to the 

Fefferman-Graham coordinate z by z = ℓey/ℓ 

In the two-sided version with the Z2 symmetry y -ybr ↔ ybr - y one 

identifies the region -∞ < y < ybr with  ybr < y < +∞. Fwithout loss of 

generality we may put observer’s brane at ybr = 0.  

(24) 

(25) 



We start with a simple ansatz for the line element 

Where we assume that ψ vanishes at y=∞ and ψ(0)=1. Then one finds 

the relevant components of the Ricci tensor 

and the Ricci scallar 

where the prime ′ denotes a derivative with respect to y . Using this 

the action may be brought to the form 

(26) 

(27) 

(28) 



The extrinsic curvature is easily calculated using the definition  and the 

unit normal vector n = (0; 0; 0; 0; 1).  The nonvanishing components 

The fifth coordinate  may be integrated out if  ψ → 0 sufficiently fast as 

we approach  y = ∞ 

The functional form of ψ is found by solving the Einstein equations (24) 

in the bulk. Using the components of the Ricci tensor (26) and  Ricci 

scalar (27) we obtain 

Combining (30) and (31)  we find (Exercise No 10) 

where  (5)6 /  

(30) 

(29) 

(31) 
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With this solution, the metric (12) is AdS5 in normal coordinates 

Equation (27) reduces to the four-dimensional Einstein equation in 

empty space 
1

0
2

R Rg  

This equation should follow from the variation of the action (28) with 

Lmatt = 0 after integrating out the fifth coordinate. For this to happen 

it is necessary that the last three terms in square brackets are 

canceled by the boundary term and the brane action without matter. 

Using (29) one finds that the integral of the second term  is  

canceled by the Gibbons-Hawking term. Then, the integration over 

y  fom 0 to ∞ yields 
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The cancellations will take place if 

This is the RSII fine tuning condition 

(33) 
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The total brane contribution is 

the last term in (32) is   canceled by  the two brane actions in the limit  

l 

For the two branes at y=0 and y=l we find  
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IIn this way, after integrating out the fifth dimension, the total effective 

four-dimensional action assumes the form of the standard Einstein-

Hilbert action without cosmological constant 

where GN is the Newton constant defined by 
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Using this the constant σ0  in (33) can be expressed as  
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Exercise No 11: Derive the RSII fine tuning condition (33) from 

the junction conditions  

It may be shown that the fine tuning condition (33) follows directly 

from the junction conditions (25)  
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for a brane with no matter at y=0 and the metric 

N.B., PRD 93, 066010 (2016) , arXiv:1511.07323 



y   y 

RSII Cosmology – Dynamical Brane 

Cosmology on the brane is obtained by allowing the brane to 

move in the bulk. Equivalently, the brane is kept fixed at y=0 

while making the metric in the bulk time dependent. 

0y 



Consider a time dependent brane hypersurface Σ defined by 

( ) 0r a t 

in AdS-Schwarzschild background. The normal to Σ is   

Using the normalization                        one finds the nonvanishing 

components 

where  

1G n n
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Simple derivation of the RSII braneworld cosmology 

Following J. Soda, Lect. Notes Phys. 828, 235 (2011)  arXiv:1001.1011  

(34) 

See also Appendix in N.B., PRD 93, 066010 (2016) , arXiv:1511.07323 



Then, the induced line element on the brane is 

The junction conditions on the brane with matter may be written as  

2 2 2 2 2
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where  

The      -component gives  

Exercise No 11: Derive  the      -component of 

the junction condition  
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This may be written as  

Hubble expansion rate on the brane 

Substituting for f the expression (34) we obtain 

Employing the RSII fine  tuning condition  σ=σ0   we find the effective 

Friedmann equation 

where  



The Friedmann equation on the brane is modified 
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dark radiation 

due to a black hole in the bulk – should not 

exceed 10% of the total radiation content in 

the epoch of BB nucleosynthesis   

Quadratic deviation from 

the standard FRW. 

Decays  rapidly as          in 

the radiation epoch 

8~ a

RSII cosmology is thus subject to astrophysical tests 



0y  y 

Consider an additional 3-brane moving in the 5-d  bulk 

spacetime with metric  

Dynamical Brane as a Tachyon 
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The points on the brane are parameterized by                                     

The 5-th coordinate Y is treated as a dynamical field that depends on x. 

The brane action is  

  ,MX x Y x

Using the induced metric 
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Exercise No 12:  

(a)Prove that the following relation holds 

 

 

for a general metric gμν , unit timelike vector uμ and α2 < 1 

 

2 2det( ) = (1 )detg u u g     

(b) Use (a) to derive  the induced metric (36) 

Hint: use a comoving reference frame. 



Changing  Y to a new field                               we obtain the 

effective brane action 

This action is of the Born-Infeld type and describes a tachyon with 

potential   
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Where we have defineed 

Exercise No 13: Show that                  in the AdS5  background 

metric  
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    The effective Born-Infeld Lagrangian 

 

 

    for the  tachyon field θ describes unstable modes in string 

theory  

 

    

   A typical potential has minima at              . Of particular 

interest is the inverse power law potential               .   

    For n > 2 , as the tachyon rolls near minimum, the pressure 

                       very quickly and one thus apparently gets 

pressure-less matter (dust) or cold dark matter.  
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A. Sen, JHEP  0204 (2002);  0207 (2002).  

 L.R. Abramo and F. Finelli,  PLB 575(2002).  

Tachyon as CDM 
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AdS/CFT  correspondence is a holographic duality between 

gravity in d+1-dim space-time and quantum CFT on the d-dim 

boundary. Original formulation stems from string theory: 

Conformal  

Boundary  

at z=0 

AdS bulk 
time 

Equivalence of 3+1-dim 

N =4 Supersymmetric YM Theory  

and string theory in AdS5S5 

Examples of CFT: 

quantum electrodynamics, 

Yang Mills gauge theory, 

massless scalar field theory, 

massless spin ½ field theory 

J. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 

AdS/CFT and Braneworld Holography 



Why AdS?   

Anti de Sitter space is a maximally symmetric solution to Einstein’s 

equations with negative cosmological constant.  

In 4+1 dimensions the symmetry group is AdS5≡ SO(4,2) 

So there is a boundary at z=0. A  correspondence between gravity in 

the bulk and the conformal field theory (CFT) on the boundary of AdS 

may be expected because the 3+1 boundary conformal field theory is 

invariant under conformal  transformations: Poincare + dilatations + 

special conformal transformation = conformal group ≡ SO(4,2) 

The bulk metric may be represented by (Fefferman-Graham coordinates)   
2
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(5) 2
( )a b

abds G dX dX g dx dx dz
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 It is sometimes convenient to represented the metric in Gaussian normal 

coordinates  

Warp factor 



.  

time 

Conformal 

boundary 

at z=0 

space 

z 

x RSII brane 

at z=zbr 

Foliation of the bulk: 

In the second Randall-Sundrum (RS II) model a 3-brane is located  at a 

finite distance from the boundary of AdS5.  



In the original RSII model the region                   is identied with                      

with the observer brane at the fixed point z = zbr. The braneworld is sitting 

between two patches of AdS5, one on either side, and is therefore dubbed 

“two-sided”. In contrast, in the “one-sided” RSII model the region                    

is simply cut off.  

br0 z z  brz z  

br0 z z 

1-sided and 2-sided versions are equivalent from the point of view of an 

observer at the brane. However, in the 1-sided RSII model, by shifting the 

boundary in the bulk from z = 0 to z = zbr , the model is conjectured to be 

dual to a cutoff CFT coupled to gravity, with z = zbr providing the cutoff. This 

connection involves a single CFT at the boundary of a single patch of AdS5. 

In the 2-sided RSII model one would instead require two copies of the CFT, 

one for each of the AdS5 patches. 

M. J. Duff and J. T. Liu, Class. Quant. Grav. 18 (2001); Phys. Rev. Lett. 85, (2000) 



In the RSII model by introducing the boundary in AdS5 at  

z = zbr instead of z = 0,  the model is conjectured to be dual to a cutoff 

CFT coupled to gravity, with z = zbr providing the IR cutoff (corresponding 

to the UV catoff of the boundary CFT) 

The on-shell bulk action is IR divergent because physical distances 

diverge at z=0 

(0) 2 (2) 4 (4)g g z g z g       

de Haro,  Solodukhin,  Skenderis, Comm. Math. Phys. 217 (2001) 
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Explicit expressions for                          , in terms of arbitrary      
(2 ) , 2,4ng n  (0)g

A 4-dim asymptotically AdS metric near z=0 can be expanded as 



We regularize the action by placing the RSII brane near 

the AdS boundary, i.e., at z = εℓ, ε<<1, so that the induced 

metric is 

(5)
reg 5

bulk 0 5 GH

5

det
8 2

z

R
S S d x G S

G








 
     

 


(0) 2 2 (2)

2

1
( )h g g  


    

The bulk splits in two regions: 0≤ z ≤εℓ, and εℓ ≤ z ≤∞. We 

can either discard the region 0≤ z ≤εℓ (one-sided 

regularization,          ) or invoke the Z2 symmetry and 

identify two regions (two-sided regularization,           ).  
The regularized bulk action is 

2 



We obtain the renormalized boundary action by adding 

 counterterms and taking the limit  ε→0 

ren (0)

0 0 1 2 3
0

[ ] lim( [ ] [ ] [ ] [ ])S g S G S h S h S h


   

The necessary counterterms are 

Hawking, Hertog and Reall, Phys. Rev. D 62 (2000), hep-th/0003052 



Now we demand that the variation with respect to hμν of the 

total RSII action (the regularized on shell bulk action together 

with the brane action)  vanishes, i.e., 

reg

bulk br( [ ] [ ]) 0S h S h  

Which may be expressed as 
matter on  

the brane 

cosmological  

constant 
Einstein Hilbert term 

AdS/CFT prescription 



The variation of the action yields Einstein’s equations on the 

boundary 

Explicit realization of the AdS/CFT correspondence: the vacuum 

expectation value of a boundary CFT operator is obtained solely 

in terms of geometrical quantities of the bulk. 

de Haro,  Solodukhin,  Skenderis, Comm. Math. Phys. 217 (2001) 

This equation (for γ=1) was derived in a different way in 

                                                                                with de Haro,  Solodukhin,  Skenderis, Class. Quant. Grav. 18 (2001) 

 (0) CFT matt

N

1
8

2
R Rg G T T      



Conformal anomaly 

 
3

CFT 2

GB

5128
T G C

G






 

AdS/CFT prescription yields the trace of the boundary stress 

tensor TCFT 

compared with the general result from field theory 

Gauss-Bonnet invariant 

Weyl  tensor squared 

The two results agree if we ignore the last term  

and identify 3

5128
b c

G
 

CFT 2

GB 'T bG cC b R

   

2

GB 4G R R R R R 

   



Generally b ≠ c because 

s f v

2

(11/ 2) 62

360(4 )

n n n
b



 


but  in the N = 4 U(N) super YM theory b=c with  

2 2 2

s f v6 , 4 ,n N n N n N  

The conformal anomaly is correctly reproduced if we 

identify   
3 2

5

2N

G 


s f v

2

3 12

120(4 )

n n n
c



 



