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1 Notation and conventions

1.1 Lorentz and SL(2, C) symmetries

In these lectures we use ’mostly minus metric’, i.e. gµν = diag(1,−1,−1,−1). Lorentz transfor-
mations leave metric unchanged, ΛTgΛ = g. The proper orthochronous Lorentz transformations,
L↑

+, consisting of boosts and rotations, satisfy the following two conditions:

det Λ = 1, Λ0
0 ≥ 1 . (1)

These transformations are a subgroup of Lorentz group. Lorentz algebra has six generators,
Mµν = −Mνµ. The commutation relations are

[Mµν ,Mρσ] = i(gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ) .

The generators of rotations are Ji =
1
2
ϵijkMjk, while generators corresponding to the boosts are

Nk =M0k. Further, one can introduce the following complex combinations Ai =
1
2
(Ji+ iNi) and

Bi =
1
2
(Ji − iNi). It is easy to prove that

[Ai, Aj] = iϵijlAl, [Bi, Bj] = iϵijlBl, [Ai, Bj] = 0 .

This is a well–known result which gives a connection between the Lorentz algebra and ”two”
SU(2) algebras. Irreducible representations (i. e. fields) of the Lorentz group are classified by
two quantum numbers (j1, j2) which come from above two SU(2) groups. L↑

+ is double connected
(due to SO(3) subgroup) and non-compact group.

To discuss its representations one has to consider its universally covering group, SL(2, C).
SL(2, C) is the group of 2×2 complex matrices with unit determinant. Pauli matrices are given
by

σµ = (1,σ), σ̄µ = (1,−σ) ,

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.
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To find the connection between SL(2, C) and L↑
+ we define one-to-one map between Minkowski

coordinates, xµ and 2× 2 Hermitian matrices:

X = xµσ
µ = X† =

(
x0 + x3 x1 − ix2
x0 + ix2 x0 − x3

)
. (2)

Let us now transform X to another Hermitian matrix in the following way X → X ′ =MXM †,
where M ∈ SL(2, C). This transformation preserves the interval, i.e.

detX ′ = detX ⇔ x′2 = x2.

From

x′µ =
1

2
Tr(σ̄µX ′) =

1

2
Tr
(
σ̄µMσνM

†
)
xν = Λµ

νx
ν , (3)

it follows that

Λµ
ν =

1

2
Tr
(
σ̄µMσνM

†
)
.

The mapping M → Λ(M) is 2 − 1 homomorphism between SL(2, C) and L↑
+. This mapping

is not an isomorphism since matrices ±M correspond to Lorentz matrix Λ. SL(2, C) is simply
connected, so it is the universal covering group of L↑

+.

1.2 Representations

A left-handed Weyl spinor, ψα(x) is two component object, which transforms in the following
way

ψ′
α(Λx) =M β

α ψβ(x) (4)

under SL(2, C) transformations. The matrix M belongs SL(2, C) group. Indices α and β take
values 1, 2. In Quantum Field Theory ψα(x) is an operator. Its transformation law under Lorentz
transformations is

U−1(Λ)ψα(x)U(Λ) =M β
α ψβ(Λ

−1x) . (5)

Let us define ψ̄α̇ = (ψα)
†, where dagger denotes Hermitian conjugation of the field operator.

If ψα is a classical Grassmann field, we use complex conjugation, i.e. ψ̄α̇ = (ψα)
∗. The complex

conjugation is defined in a such way that it has properties similar to the hermitian conjugation.
For example, both of them reverse the order of fermions. The complex conjugate representation
is

ψ̄′
α̇ = (M∗) β̇

α̇ ψ̄β̇ . (6)

ψ̄β̇ is a right–handed Weyl spinor or dotted spinor. Left-handed spinor ψα is also called undotted
spinor. These two representations of SL(2, C) are inequivalent.

Now, we introduce invariant tensors for SL(2, C). Antisymmetric tensors are defined by

ϵαβ = ϵα̇β̇ =

(
0 −1
1 0

)
(7)
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ϵαβ = ϵα̇β̇ = (ϵαβ)
−1 = (ϵα̇β̇)

−1 =

(
0 1
−1 0

)
. (8)

It is easy to prove ϵαβϵ
βγ = δγα and ϵα̇β̇ϵ

β̇γ̇ = δγ̇α̇ . From

ϵαβM
α

γ M β
δ = ϵγδ detM = ϵγδ (9)

it follows that ϵαβ is an invariant tensor. Similarly, ϵαβ, ϵα̇β̇ and ϵα̇β̇ are invariant tensors. The
invariant tensors are used for lowering or raising spinor indices:

ψα = ϵαβψβ, ψα = ϵαβψ
β , (10)

ψ̄α̇ = ϵα̇β̇ψ̄β̇, ψ̄α̇ = ϵα̇β̇ψ̄
β̇ . (11)

Let us find the transformation law for ψα:

ψ′α = ϵαβψ′
β = ϵαβM γ

β ϵγδψ
δ

= (ϵ−1Mϵ)αδψ
δ

= (MT−1)αδψ
δ . (12)

Spinors ψα and ψα transform according to equivalent representations. Similarly, we get

ψ̄′α̇ = (M∗−1) α̇
β̇
ψ̄β̇ , (13)

i. e. spinors ψ̄α̇ and ψ̄α̇ transform under equivalent representations. The fields ψ̄α̇ and ψ̄α̇ are
right-handed Weyl spinors. Undotted and dotted representation are very often called funda-
mental and antifundamental representations. The left-handed (or undotted ) spinors are (1

2
, 0)

irreducible representation, while right-handed (or dotted) spinors are (0, 1
2
).

Multiplying these spinors with each other we get higher spinors. They have dotted and
undotted indices, ψα1...αnα̇1...α̇m and transform as follows

ψ′
α1...αnα̇1...α̇m

=M β1
α1

. . .M βn
αn

(M∗) β̇1

α̇1
. . . (M∗) β̇m

α̇m
ψβ1...βnβ̇1...β̇m

.

These spinors are generally reducible. The irreducible spinors are ψ(α1,...,αn)(α̇1,...,α̇m), where (..)

denotes symmetrization. They belong to
(

n
2
, m

2

)
irreducible representation of SL(2, C). Let us

list some important irreducible representations:
• (0, 0) scalar or singlet representation
• (1/2, 0) left–handed Weyl spinor
• (0, 1/2) right-handed Weyl spinor
• (1/2, 1/2) vector
• (1, 0) self-dual tensor
• (0, 1) antiself-dual tensor.
From MσµM † = (Λ−1)µρσ

ρ follows that matrices σµ are invariant tensors. The matrix σµ

has the following spinorial indices
σµ
αα̇ . (14)
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Raising the spinorial indices on σµ we obtain

(σ̄µ)α̇β = ϵα̇γ̇ϵβγσµ
γγ̇ = (σµ)βα̇ . (15)

It is easy to show
(σ̄µ)α̇β = (1,−σ)α̇β . (16)

The matrices σµ and σ̄µ satisfy the following identites:

Tr(σµσ̄ν) = 2gµν (17)

σµ
αα̇(σ̄µ)

β̇β = δβαδ
β̇
α̇ (18)

σµ
αα̇(σ̄µ)β̇β = −2ϵα̇β̇ϵαβ (19)

(σµσ̄ν + σν σ̄µ) β
α = 2gµνδβα . (20)

Transformation laws for quantum Weyl fields are:

U−1(Λ)ψα(x)U(Λ) = M β
α ψβ(Λ

−1x), (
1

2
, 0)

U−1(Λ)ψα(x)U(Λ) = (M−1) α
β ψ

β(Λ−1x), (
1

2
, 0)

U−1(Λ)ψ̄α̇(x)U(Λ) = (M∗) β̇
α̇ ψ̄β̇(Λ

−1x), (0,
1

2
)

U−1(Λ)ψ̄α̇(x)U(Λ) = (M∗−1) α̇
β̇
ψ̄β̇(Λ−1x), (0,

1

2
) , (21)

where M ∈ SL(2,C).

1.3 Dirac and Majorana spinors

Weyl representation of γµ matrices is given by

γµ =

(
0 σµ

σ̄µ 0

)
. (22)

γ5 matrix is defined by

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
. (23)

Dirac spinor is

ΨD =

(
φα

χ̄α̇

)
, (24)

and it belong to the reducible representation (0, 1
2
)⊕ (1

2
, 0).

Adjoint Dirac spinor is
ψ̄D = ψ†β =

(
χα φ̄α̇

)
(25)
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where

β =

(
0 1
1 0

)
=

(
0 δβ̇α̇
δβα 0

)
. (26)

The matrices γ0 and β are numerically equal, but have different spinorial structure.
Majorana spinor satisfies the condition ΨM = CΨ̄T

M , were C = iγ0γ2 is the charge conjugation
matrix. It is easy to show that

C =

(
ϵαβ 0

0 ϵα̇β̇

)
.

Majorana condition leads to ψα = χα, so Majorana spinor is

ΨM =

(
ψα

ψ̄α̇

)
. (27)

1.4 Generators in (anti)fundamental representations

Under Lorentz transformation Dirac spinors transform as

ψ′
D(Λx) = e−

i
4
ωµνΣµν

ψD(x) . (28)

The matrices Σµν are
1

2
Σµν =

i

4
[γµ, γν ] = i

(
σµν 0
0 σ̄µν

)
, (29)

where

σµν = 1
4
(σµσ̄ν − σν σ̄µ)

σ̄µν = 1
4
(σ̄µσν − σ̄νσµ) .

Spinorial indices of these matrices are (σµν) β
α and (σ̄µν)α̇

β̇
. Therefore, the M matrices are given

by

M β
α =

(
e

1
2
ωµνσµν

) β

α
,

(M∗) β̇
α̇ =

(
e−

1
2
ωµν σ̄µν

)β̇
α̇
,

(M−1T )αβ =
(
e−

1
2
ωµνσµν

) α

β

(M∗−1) α̇
β̇

=
(
e

1
2
ωµν σ̄µν

)α̇
β̇
. (30)

Matrices iσµν and iσ̄µν are generators of Lorentz group, and they satisfy1

ϵµνρσσ
ρσ = 2iσµν

ϵµνρσσ̄
ρσ = −2iσ̄µν . (31)

1We use the convention in which ϵ0123 = −ϵ0123 = +1
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σµν and σ̄µν are a self-dual tensor and an anti-self-dual tensor, respectively. We can define
(σµνϵ)αβ and (ϵσ̄µν)α̇β̇ by

(σµνϵ)αβ = (σµν) γ
α ϵγβ , (32)

(ϵσ̄µν)α̇β̇ = ϵα̇γ̇(σ̄
µν)γ̇

β̇
. (33)

They satisfy

(σµνϵ)αβ = (σµνϵ)βα

(ϵσ̄µν)α̇β̇ = (ϵσ̄µν)β̇α̇ . (34)

1.5 Bilinear quantities

Weyl spinors anticommute, i.e
ψαχβ = −χβψα . (35)

Let us define the product of Weyl spinors in the following way

ψχ = ψαχα = ψ1χ1 + ψ2χ2 = ψ2χ1 − ψ1χ2 . (36)

Similarly, we introduce
ψ̄χ̄ = ψ̄α̇χ̄

α̇ . (37)

In our convection dotted indices are contracted from lower left to upper right, while undotted
indices are contracted from upper left to lower right. ψχ and ψ̄χ̄ are invariant under SL(2, C).
Four-vectors and tensors are defined as

ψσµχ̄ = ψασµ
αα̇χ̄

α̇ ,

ψ̄σ̄µχ = ψ̄α̇(σ̄
µ)α̇αχα ,

ψσµνχ = ψα(σµν) β
α χβ ,

ψ̄σ̄µνχ̄ = ψ̄α̇(σ̄
µν)α̇

β̇
χ̄β̇ . (38)

The bilinear quantities defined above satisfy the following properties:

φχ = χφ ,

φ̄χ̄ = χ̄φ̄ ,

φσµχ̄ = −χ̄σ̄µφ ,

φσµσ̄νχ = χσν σ̄µφ ,

φ̄σ̄µσνχ̄ = χ̄σ̄νσµφ̄ ,

φσµνχ = −χσµνφ ,

φ̄σ̄µνχ̄ = −χ̄σ̄µνφ̄ ,

φσµνφ = 0 ,

φ̄σ̄µνφ̄ = 0 . (39)
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Pauli matrices are hermitian. Their complex conjugation gives

(σµ

αβ̇
)∗ = ϵα̇β̇ϵβα(σ̄

µ)β̇α = σ̄µ
α̇β = σµ

βα̇ , (40)

(σ̄µα̇β)∗ = ϵαγϵβ̇δ̇(σ
µ)γδ̇ = σµαβ̇ = σ̄µβ̇α . (41)

Taking complex conjugation of Lorentz generators we obtain

((σµν) β
α )∗ = −(σ̄µν)β̇α̇ ,

((σ̄µν)α̇
β̇
)∗ = −(σµν) α

β . (42)

The following relations are useful:

((σµνϵ)αβ)
∗ = (ϵσ̄µν)β̇α̇ , (43)

((ϵσ̄µν)α̇β̇)
∗ = (σµνϵ)βα . (44)

Hermitian conjugation changes the order of spinors. For example:

(ψχ)† = (ψαχα)
† = χ̄α̇ψ̄

α̇ = −ψ̄α̇χ̄α̇ = ψ̄χ̄ . (45)

The following identities can be shown similarly:

(ψ̄χ̄)† = ψχ ,

(ψσµχ̄)† = χσµψ̄ ,

(ψ̄σ̄µχ)† = χ̄σ̄µψ̄ ,

(ψσµνχ)† = ψ̄σ̄µνχ̄ ,

(ψ̄σ̄µνχ̄)† = ψσµνχ . (46)

1.6 Identites with σ matrices

The list of useful identities with σ matrices is given below:

Tr(σµσ̄ν) = 2gµν (47)

σµ
αα̇(σ̄µ)

β̇β = δβαδ
β̇
α̇ (48)

σµ
αα̇(σ̄µ)β̇β = −2ϵα̇β̇ϵαβ (49)

(σµσ̄ν + σν σ̄µ) β
α = 2gµνδβα (50)

(σ̄µσν + σ̄νσµ)α̇
β̇
= 2gµνδβ̇α̇ (51)

(σµσ̄ν) β
α = gµνδβα + 2(σµν) β

α (52)

(σ̄µσν)α̇
β̇
= gµνδβ̇α̇ + 2(σ̄µν)α̇

β̇
. (53)
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From
γµγνγρ = (gµνgρσ − gνρgνσ + gµσgρν)γσ + iϵσµνργ5γσ (54)

it follows

σµσ̄νσρ = gµνσρ − gµρσν + gνρσµ − iϵσµνρσσ

σ̄µσν σ̄ρ = gµν σ̄ρ − gµρσ̄ν + gνρσ̄µ + iϵσµνρσ̄σ . (55)

The trace identities are:

Tr(σµνσρσ) =
1

2
(gνρgµσ − gµρgνσ + iϵµνρσ) (56)

Tr(σ̄µν σ̄ρσ) =
1

2
(gνρgµσ − gµρgνσ − iϵµνρσ) . (57)

1.7 Fierz identities

Fierz identities are very helpful in calculations with spinors. The following relations can be easily
obtained

θαθβ = −1

2
ϵαβθθ (58)

θαθβ =
1

2
ϵαβθθ

θ̄α̇θ̄β̇ =
1

2
ϵα̇β̇ θ̄θ̄

θ̄α̇θ̄β̇ = −1

2
ϵα̇β̇ θ̄θ̄ . (59)

With a help of the previous identities the following Fierz rearrangement formulas can be proven

(θϕ)(θψ) = −1

2
(θθ)(ϕψ), (60)

(θ̄ϕ̄)(θ̄ψ̄) = −1

2
(θ̄θ̄)(ϕ̄ψ̄),

(θσµθ̄)(θσν θ̄) =
1

2
gµν(θθ)(θ̄θ̄),

(θσµθ̄)θα = −1

2
σµ

αβ̇
θ̄β̇(θθ),

(θσµθ̄)θ̄α̇ =
1

2
σµ
βα̇θ

β(θ̄θ̄),

(θ̄λ̄)(χσµθ̄) = −1

2
(θ̄θ̄)(χσµλ̄),

(θλ)(χ̄σ̄µθ) = −1

2
(θθ)(χ̄σ̄µλ),

(θσνψ̄)(θσµλ̄) =
1

2
(θθ)(ψ̄σ̄νσµλ̄), (61)
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χα(ξη) + ξα(ηχ) + ηα(χξ) = 0, (62)

χ̄α̇(ξ̄η̄) + ξ̄α̇(η̄χ̄) + η̄α̇(χ̄ξ̄) = 0 . (63)

As a example, let us check (60). Applying (58), the left hand side of (60) becomes

(θϕ)(θψ) =
1

2
ϵαβ(θθ)ϕαψβ = −1

2
(θθ)(ϕψ) . (64)

Remaining identities can be proven in a similar way.
Let us generalize identities (58-59) to the case of two different spinors. We obtain

θαψ̄α̇ =
1

2
(θσµψ̄)(σµ)αα̇ (65)

ψαχβ =
1

2
ϵαβψχ+

1

2
(ψσµνχ)(σµνϵ)αβ

ψ̄α̇χ̄β̇ = −1

2
ϵα̇β̇ψ̄χ̄+

1

2
(χ̄σ̄µνψ̄)(ϵσ̄µν)β̇α̇ . (66)

Let us prove (65). The left hand side of (65) is a product of dotted and undotted spinors. Since

(
1

2
, 0)⊗ (0,

1

2
) = (

1

2
,
1

2
)

we can assume
θαψ̄α̇ = Aµσµαα̇ , (67)

where Aµ is a four-vector. Multiplying (67) by σ̄να̇α we obtain

Aµ =
1

2
θσµψ̄ .

1.8 Partial derivatives

Partial derivatives with respect to the anticommuting variables are denoted by

∂α =
∂

∂θα
, ∂α =

∂

∂θα
, ∂̄α̇ =

∂

∂θ̄α̇
, ∂̄α̇ =

∂

∂θ̄α̇
. (68)

Indices on partial derivatives are lowered or raised by ϵ− symbol. Note that, there is one extra
minus sign:

∂α = −ϵαβ∂β, ∂α = −ϵαβ∂β
∂̄α̇ = −ϵα̇β̇∂̄

β̇, ∂̄α̇ = −ϵα̇β̇∂̄β̇ . (69)

The following derivatives are frequently used:

∂θβ

∂θα
= ∂αθ

β = δβα,
∂θβ
∂θα

= ∂αθβ = ϵβα (70)

∂̄α̇θ̄
β̇ = δβ̇α̇, ∂̄α̇θ̄β̇ = ϵβ̇α̇ (71)
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∂α(θθ) = 2θα (72)

∂̄α̇(θ̄θ̄) = −2θ̄α̇ (73)

∂α(θθ) = −2θα (74)

∂̄α̇(θ̄θ̄) = 2θ̄α̇ (75)

(∂∂)(θθ) = ∂α∂α(θθ) = 4 (76)

(∂̄∂̄)(θ̄θ̄) = ∂̄α̇∂̄
α̇(θ̄θ̄) = 4 . (77)

Complex conjugation of derivative is defined by

(∂α)
∗ = −∂̄α̇ . (78)

This is in accordance with definition of conjugation

δβ̇α̇ = (∂αθ
β)∗ = θ̄β̇(∂α)

∗ = −(∂α)
∗θ̄β̇ = ∂̄α̇θ̄

β̇ . (79)

2 Supersymmetric algebra

2.1 N = 1 Super–Poincare algebra

To start with, let us state the Coleman-Mandula theorem:
Only possible Lie symmetry of a nontrivial S matrix is a direct product of Poincare and

internal symmetry.
The assumptions in Coleman-Mandula theorem are the following: the particles are massive,

theory is local, unitary and relativistic covariant. Thus, generators of the Lie symmetry are:
momenta, P µ, angular momenta, Mµν and bosonic generators Br. These bosonic generators are
Lorentz scalars.

This theorem can be evaded using the graded Lie symmetry instead of the usual Lie symmetry.
The graded Lie algebra is a generalization of Lie algebra, containing bosonic and fermionic
generators. The graded vector space (precisely Z2 graded) is a direct sum

V = L0 ⊕ L1 .

The elements of L0 are bosons or even elements, while the elements of L1 are fermions or odd
elements. The grading is defined by

|X| =

{
0, X ∈ L0

1, X ∈ L1

. (1)

Between elements of the graded vector space Lie product [, } is defined, with the following
properties:

1. [X, Y } = −(−)|X||Y |[Y,X} ,
2. (−)|X||Z|[X, [Y, Z}}+ (−)|Y ||X|[Y, [Z,X}}+ (−)|Z||Y |[Z, [X, Y }} = 0 . (2)
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The Lie product of two bosons or one fermion and one boson is a commutator. In the case two
fermions Lie product is an anticommutator, i.e.

[B1, B2} = [B1, B2], [B1, F1} = [B1, F1], [F1, F2} = {F1, F2} . (3)

The second property is super-Jacobi identity.
Super–Poincare algebra is an extension of Poincare algebra which includes the fermionic

generators in addition to the bosonic ones. These fermionic generators transform bosonic state
into fermionic and vice verse. The fermionic generators are left-handed and right-handed spinors,
Qα and Q̄α̇. This statement is known as the Haag–Loppusanski–Sonius theorem.

The Lie product of generators is a commutator or anticommutator, and it must be linear in
terms of generators. First, we have to find [Pµ, Qα]. We assume that

[P µ, Qα] = cσµ

αβ̇
Q̄β̇ . (4)

From this expression it follows that

[P µ, Q̄β̇] = c∗σ̄µβ̇γQγ . (5)

Applying super–Jacobi identity

[P µ, [P ν , Qα]] + [P ν , [Qα, P
µ]] + [Qα, [P

µ, P ν ]] = 0

we obtain
|c|2(σνµ) β

α Qβ = 0 ,

and finally we conclude c = 0, i. e. [Pµ, Qα] = 0.
Since Qα is a Weyl spinor, it transforms as follows

e
i
2
ωµνMµνQαe

− i
2
ωµνMµν =

(
e

1
2
ωµνσµν

) β

α
Qβ .

Expanding the previous expression in the first order in ωµν we obtain

[Mµν , Qα] = −i(σµν) β
α Qβ . (6)

In the same way, one can show that

[Mµν , Q̄
α̇] = −i(σ̄µν)α̇β̇Q̄

β̇ . (7)

Let us find the anticommutator {Qα, Qβ}. Due to index structure this anticommutator has the
form

{Qα, Q
β} = d(σµν) β

α Mµν , (8)

where d is an arbitrary constant. Applying the super–Jacobi identity

[Pµ, {Qa, Q
β}] + {Qα, [Q

β, Pµ]} − {Qβ, [Pµ, Qα]} = 0
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we find d = 0. Thus, {Qα, Q
β} = 0. Finally, we have to find {Qα, Q̄β̇}. Taking into account the

index structure of this expression we find

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ . (9)

The factor 2 is fixed by a convection.
Simple (or N = 1) Super–Poincare algebra is

[Pµ, Pν ] = 0, (10)

[Mµν , Pρ] = i(gνρPµ − gµρPν), (11)

[Mµν ,Mρσ] = −i(gµρMνσ + gνσMµρ − gνρMµσ − gµσMνρ), (12)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0,

{Qα, Q̄β̇} = 2σµ
αβ̇Pµ, (13)

[Qα, Pµ] = [Q̄α̇, Pµ] = 0,

[Qα,Mµν ] = i(σµν)α
βQβ,

[Q̄α̇,Mµν ] = i(σ̄µν)
α̇
β̇Q̄

β̇.

2.2 Extended Super–Poincare algebra

Fermionic generators can have an additional index coming from some internal symmetry group:
QA

α (A = 1, . . . ,N ). In this case N = 1 supersymmetry is extended to the N−extended
supersymmetry:

[Pµ, Pν ] = 0, (14)

[Mµν , Pρ] = i(gνρPµ − gµρPν),

[Mµν ,Mρσ] = −i(gµρMνσ + gνσMµρ − gνρMµσ − gµσMνρ),

{QA
α , Q

B
β } = ϵαβZ

AB ,

{Q̄A
α̇ , Q̄

B
β̇
} = ϵα̇β̇Z

†AB,

{QA
α , Q̄

B
β̇
} = 2δABσµ

αβ̇Pµ,

[QA
α , Pµ] = [Q̄A

α̇ , Pµ] = 0,

[QA
α ,Mµν ] = i(σµν)α

βQA
β ,

[Q̄α̇A,Mµν ] = i(σ̄µν)
α̇
β̇Q̄

β̇A

[Br, Bs] = if rstBt

[Br, QA
α ] = −(br)ACQ

C
α

[Br, Q̄A
α̇ ] = Q̄α̇C(b

r)CA
(15)

Central charge, ZAB = −ZBA commutes with all generators in the algebra. It is a linear
combination of the internal symmetry generators, ZAB = λABrBr. The largest possible internal
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symmetry group is U(N). If Z = 0, SUSY algebra is invariant under QA
α −→ UA

B Q
B
α . If Z ̸= 0,

{Q,Q} relation spoils this invariance. In this case the algebra is invariant under some subgroup
of U(N). In N = 1 SUSY, central charge is zero, Z = 0: there is only one index, so Z can’t be
antisymmetric. In this case, U(1) symmetry is called R-symmetry :

[Qα, R] = Qα, [Q̄α̇, R] = −Q̄α̇. (16)

3 Superspace and Superfields

In this section we introduce the concept of superspace. Fields on superspace are called super-
fields. Supersymmetry is realized as a translation in superspace.

A superspace is an extension of Minkowski space-time where we add four Grassmann coor-
dinates θα, θ̄α̇ to the four bosonic Minkowski coordinates. These coordinates satisfy

[xµ, xν ] = [xµ, θα] = [xµ, θ̄α̇] = 0

{θα, θ̄α̇} = {θα, θβ} = {θ̄α̇, θ̄β̇} = 0 . (1)

Thus, superspace is parametrized by the coordinates: xµ, θα, θ̄α̇ . For later convenience we cal-
culate

[ξQ, θ̄Q̄] = ξαQαθ̄α̇Q̄α̇ − θ̄α̇Q̄α̇ξαQα

= −ξαθ̄α̇QαQ̄α̇ + θ̄α̇ξ
αQ̄α̇Qα

= −ξαθ̄α̇{Qα, Q̄α̇}
= ξαθ̄α̇{Qα, Q̄α̇}
= 2ξασµ

αα̇θ̄
α̇Pµ . (2)

In this part of Lectures, SUSY generators are denoted by Q, Q̄. Any element of super–Poincare
group can be written in the form

ei(x
µPµ+θαQα+θ̄α̇Q̄α̇)e−

1
2
ωµνMµν . (3)

We use the notation
G(x, θ, θ̄) = ei(x

µPµ+θαQα+θ̄α̇Q̄α̇) . (4)

Actually, G(x, θ, θ̄) is an element of the coset space

Super− Poincare group/Lorentz group .

A superspace can be realized as a coset space. For details, see [1, 5]. The product of two
elements, G(a, ξ, ξ̄)G(x, θ, θ̄) is found applying Baker–Campbell–Hausdorff formula

eAeB = eA+B+ 1
2
[A,B]+...

and (2). The result is

G(a, ξ, ξ̄)G(x, θ, θ̄) = G(xµ + aµ + iξσµθ̄ − iθσµξ̄, θ + ξ, θ̄ + ξ̄) . (5)

13



The left multiplication in the group induces the following transformation of supercoordinates:

xµ → xµ + δxµ = xµ + aµ + iξσµθ̄ − iθσµξ̄

θ → θ + ξ

θ̄ → θ̄ + ξ̄ ,

where ξ is a constant parameter of SUSY transformation.
Under infinitesimal translation x′ = x+ a a classical scalar field φ(x) transforms as φ(x) →

φ′(x) = φ(x− a). The form-variation of the scalar field is given by

δφ(x) = φ′(x)− φ(x) = −aµ∂µφ(x) . (6)

From δφ(x) = iaµPµφ we conclude that P µ = i∂µ is a representation of momenta in the space
of functions. The momentum is represented as a differential operator in accordance to quantum
mechanics.

In QFT a scalar field is an operator in Hilbert space. Transformation law under translations
is given by

φ(x) → φ′(x) = e−iaµPµφ(x)eia
µPµ = φ(x− a) , (7)

where P µ are four-momenta. Then we obtain

δφ = φ′(x)− φ(x) = −i[aµPµ, φ] = −aµ∂µφ . (8)

Generally, infinitesimal variation of field under transformations of symmetry is given by

δφ = i[

∫
d3xj0, φ] , (9)

where j0 is zero component of the Noether current density. Variations of a quantum and clas-
sical field are related by the correspondence principle. If the canonical Poisson bracket of two
observable gives a third observable

{A,B} = C ,

then after quantization the commutator of corresponding operators have to satisfy

−i[Â, B̂] = Ĉ .

For details see the book [6].
A ’scalar’ superfield is a function of superspace coordinates, F = F (x, θ, θ̄). A superfield can

be expanded in power series of θ and θ̄ as

F (x, θ, θ̄) = f(x) + θϕ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x)

+θθθ̄λ̄(x) + θ̄θ̄θφ(x) + θθθ̄θ̄d(x). (10)

This expansion consists of finite number of terms, due to the anticommuting properties of θ, θ̄
coordinates. The coefficients f(x), ϕ(x), χ̄(x), m(x), n(x), vµ(x), λ̄(x), φ(x) and d(x) in the
expansion (10) are usual fields in Minkowski space–time. Superfield (10) contains 16 fermionic
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and 16 bosonic degrees of freedom. There is an equal number of bosonic and fermionic degrees
of freedom in any supersymmetric multiplet.

A superfield has to satisfy some transformation properties. Under super–Poincare transfor-
mation2

xµ → x′ = xµ − δxµ = xµ − aµ − iξσµθ̄ + iθσµξ̄

θ → θ′ = θ − ξ

θ̄ → θ̄′ = θ̄ − ξ̄ , (11)

a classical scalar superfield transforms as

F ′(x, θ, θ̄) = F (x+ δx, θ + ξ, θ̄ + ξ̄) . (12)

The infinitesimal variation of the superfield is given by

δF = F ′(x, θ, θ̄)− F (x, θ, θ̄)

= F (x+ aµ + iξσµθ̄ − iθσµξ̄, θ + ξ, θ̄ + ξ̄)− F (x, θ, θ̄)

= (aµ + iξσµθ̄ − iθσµξ̄)∂µF + ξα∂αF + ξ̄α̇∂̄
α̇F

= (aµ∂µ + ξαQα + ξ̄α̇Q̄
α̇)F , (13)

where we introduce the differential operators:

Qα = ∂α + i(σµθ̄)α∂µ

Q̄α̇ = ∂̄α̇ + iσ̄µα̇αθα∂µ . (14)

From3 δF = −i(aµPµ + ξαQα + ξ̄α̇Q̄α̇)F it follows

Pµ = i∂µ, (15)

Qα = iQα = i∂α − σµ
αα̇θ̄

α̇∂µ , (16)

Q̄α̇ = iQ̄α̇ = i∂̄α̇ − (σ̄µθ)α̇∂µ. (17)

One can check that
Q̄α̇ = (Qα)

† = ϵα̇β̇Q̄
β̇ = iQ̄α̇ ,

where Qα̇ = −∂̄α̇ − (θσµ)α̇∂µ. The operators Pµ,Qα and Q̄α̇ satisfy super–Poincare algebra, as
we expect. For example,

{Qα, Q̄α̇} = −{Qα, Q̄α̇} = 2σµ
αα̇i∂µ = 2σµ

αα̇Pµ . (18)

Under supertanslation (11) the quantum superfield F (x, θ, θ̄) transforms as

ei(a
µPµ+ξαQα+ξ̄α̇Q̄α̇)F (x, θ, θ̄)e−i(aµPµ+ξαQα+ξ̄α̇Q̄α̇)

= F (x+ aµ + iξσµθ̄ − iθσµξ̄, θ + ξ, θ̄ + ξ̄)

= F + δF . (19)

2Note minus signs in coordinate transformations.
3The parameters are −a,−ξ,−ξ̄ .
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Expanding the first line of (19) we obtain

ei(a
µPµ+ξαQα+ξ̄α̇Q̄α̇)F (x, θ, θ̄)e−i(aµPµ+ξαQα+ξ̄α̇Q̄α̇) =

F (x, θ, θ̄) + i[aµPµ + ξαQα + ξ̄α̇Q̄α̇, F ] . (20)

From the second line in (19) we again obtain

δF = (aµ∂µ + ξαQα + ξ̄α̇Q̄
α̇)F .

Under the SUSY infinitesimal transformation the variation of of quantum superfields is given by

δξF = i[ξαQα + ξ̄α̇Q̄α̇, F ] = (ξαQα + ξ̄α̇Q̄
α̇)F . (21)

Applying (10) we find SUSY variations for components in supermultiplet:

δξf = ξϕ+ ξ̄χ̄, (22)

δξϕα = 2ξαm+ σµ
αα̇ξ̄

α̇
(
vµ − i∂µf

)
, (23)

δξχ̄α̇ = 2ξ̄α̇n+ ξασµ
αα̇

(
vµ + i∂µf

)
, (24)

δξm = ξ̄λ̄− i

2
ξ̄σ̄µ∂µϕ, (25)

δξn = ξφ− i

2
ξσµ∂µχ̄, (26)

δξvµ = ξσµλ̄+ φσµξ̄ −
i

2
ξσν σ̄µ∂

νϕ+
i

2
ξ̄σ̄νσµ∂

νχ̄, (27)

δξλ̄
α̇ = 2ξ̄α̇d− i(σ̄µξ)α̇(∂µm)− i

2
(σ̄νσµξ̄)α̇∂µvν , (28)

δξφα = 2ξαd− iσµ
αα̇ξ̄

α̇∂µn+
i

2
σν

αα̇σ̄
µα̇βξβ∂µvν , (29)

δξd = − i

2
ξσµ∂µλ̄+

i

2
∂µφσ

µξ̄. (30)

Note that a SUSY variation of the highest component, d(x) is a total derivative.
Let us apply two successive supersymmetric transformations on a superfield, δηδξF. Transfor-

mation with the parameter ξ, is followed by the second transformation with parameter η. The
second transformation acts only on the field F , i.e.

δηδξF = δη(ξQ+ ξ̄Q̄)F = (ξQ+ ξ̄Q̄)(ηQ+ η̄Q̄)F .

A commutator of two SUSY transformations can be found easily. Result is given by

[δη, δξ]F = −2i(ξσµη̄ − ησµξ̄)∂µF . (31)

We see that commutator of two SUSY transformations is a translation, i.e. the supersymmetric
algebra is closed.
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3.1 Covariant Fermionic Derivatives

Supercovariant derivatives are defined by

Dα = ∂α − iσµ
αα̇θ̄

α̇∂µ, (32)

D̄α̇ = −∂̄α̇ + iθασµ
αα̇∂µ. (33)

With a help of (∂α)
∗ = −∂̄α̇ and (σµ

αβ̇
)∗θβ = σµ

βα̇θ
β we get (Dα)

∗ = D̄α̇. Derivatives with upper

indices are

Dα = ϵαβDβ = −∂α + iθ̄β̇σ̄
µβ̇α∂µ

D̄α̇ = ∂̄α̇ − iσµα̇αθα∂µ . (34)

The following anticommutation relations are very useful:

{Dα, Dβ} = {D̄α̇, D̄β̇} = {Dα, Qβ} = {Dα, Q̄α̇} = {D̄α̇, Qα} = {D̄α̇, Q̄β̇} = 0, (35)

{Qα, Q̄α̇} = −{Dα, D̄α̇} = −2iσµ
αα̇∂µ. (36)

One can check that:
D2 = DαDα = −∂α∂α − 2iσµ

αα̇θ̄
α̇∂µ∂

α + θ̄θ̄□ , (37)

D̄2 = D̄α̇D̄
α̇ = −∂̄α̇∂̄α̇ − 2iσ̄µα̇αθα∂µ∂̄α̇ + θθ□ . (38)

3.2 Chiral and antichiral superfields

An arbitrary superfield (10) is a reducible supersymmetric multiplet. One can impose some
constraints on the superfield to get irreducible representations of supersymmetry. A chiral
superfield Φ(x, θ, θ̄) is defined by the following constraint D̄α̇Φ(x, θ, θ̄) = 0, and it is a irreducible
superfield. This constraint is compatible with supersymmetry,

δξ(D̄α̇Φ) = D̄α̇(δξΦ), (39)

since supercovariant derivative anticommutes with supercharges.
We now want to solve this constraint. It can be proven that

D̄α̇F = χ̄α̇ + θασµ
αα̇(v

µ + i∂µf) + 2nθ̄α̇ + (θθ)

(
λ̄α̇ − i

2
σµ
αα̇∂µϕ

α

)
+ (θσµθ̄)

(
σµβα̇φ

β − i

2
(∂νχ̄σ̄µσ

ν)α̇

)
+ 2(θθ)θ̄α̇d−

i

2
ϵαβ(θθ)σµ

αα̇σ
ν
ββ̇
θ̄β̇∂µvν

+ i(θ̄θ̄)θασµ
αα̇∂µn− i

2
(θθ)(θ̄θ̄)σµ

αα̇∂µφ
α . (40)

The condition D̄α̇F = 0 implies

χ̄ = 0, n = 0, vµ = −i∂µf, φ = 0, λ̄α̇ =
i

2
σµ
αα̇∂µϕ

α, d = −1

4
□f . (41)
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Introducing new notation:
f ≡ A, ϕ ≡

√
2ψ, m ≡ F (42)

a general expression for a chiral superfield is

Φ(x, θ, θ̄) = A(x) +
√
2θψ(x) + θθF (x)− iθσµθ̄∂µA(x)

+
i√
2
(θθ)(∂µψ(x)σ

µθ̄)− 1

4
(θθ)(θ̄θ̄)□A(x) . (43)

The chiral supermultiplet consists of a complex scalar field A (2 d.o.f.), a left-handed Weyl-spinor
ψα (4 d.o.f.) and a complex scalar field F (2 d.o.f). Notice that the number of fermionic and
bosonic d.o.f. is equal.

By introducing chiral supercoordinate:

yµ = xµ − i(θσµθ̄) , (44)

we can rewrite the chiral superfield in the form:

Φ(y, θ) = A(y) +
√
2θψ(y) + θθF (y) . (45)

From general transformation rules (22-30), one can easily find transformation laws for compo-
nents of a chiral multiplet:

δξA =
√
2ξψ,

δξψα =
√
2Fξα − i

√
2∂µAσ

µ
αα̇ξ̄

α̇,

δξF = i
√
2∂µψσ

µξ̄ . (46)

The components A,ψ and F of a chiral multiplet transform into each other, so the multiplet
is irreducible. Also, we see that θθ-component of a chiral superfield transforms into itself plus a
divergence term. θθ component of superfield is called F term.

An antichiral superfield Ψ(x, θ, θ̄) is determined by the condition

DαΨ(x, θ, θ̄) = 0. (47)

If Φ(x, θ, θ̄) is a chiral superfield, than Φ†(x, θ, θ̄) is antichiral. An antichiral superfield can be
expressed in y† = xµ + i(θσµθ̄) coordinate as follows

Φ̄(x, θ, θ̄) = A∗(y†) +
√
2θ̄ψ̄(y†) + θ̄θ̄F ∗(y†) . (48)

Rewriting the antichiral superfield in terms of x, θ, θ̄ coordinates we find

Φ̄(x, θ, θ̄) = A∗ +
√
2θ̄ψ̄ + θ̄θ̄F ∗ + i∂µA

∗θσµθ̄ − i√
2
(θ̄θ̄)(θσµ∂µψ̄)−

1

4
□A∗(θθ)(θ̄θ̄) . (49)
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3.3 Products of Chiral and Antichiral SF

If Φi and Φj are two chiral superfields, then their product ΦiΦj is again a chiral superfield since
D̄α̇(ΦiΦj) = (D̄α̇Φi)Φj + ΦiD̄α̇Φj = 0 . In components this product is

ΦiΦj =
(
Ai(y) +

√
2θψi(y) + θθFi(y)

)(
Aj(y) +

√
2θψj(y) + θθFj(y)

)
= AiAj(y) +

√
2θ(Aiψj + Ajψi)(y) + θθ(FiAj + FjAi − ψiψj)(y) , (50)

where we apply (60). So, from two chiral multiplets we get another chiral multiplet with com-
ponents

(Ai, ψi, Fi)× (Aj, ψj, Fj) = (AiAj, Aiψj + Ajψi, AiFj + FiAj − ψiψj) . (51)

And triple product of chiral multiplets is again a chiral multiplet:

(Ai, ψi, Fi)× (Aj, ψj, Fj)× (Ak, ψk, Fk) =

(AiAj, Aiψj + Ajψi, AiFj + FiAj − ψiψj)× (Ak, ψk, Fk)

= (AiAjAk, AiψjAk + AjψiAk + AiAjψk, AiAjFk − Aiψjψk + ciclic ijk) . (52)

The product of a chiral and an anti-chiral superfied is

Φ̄Φ = A∗A+
√
2A∗θψ +

√
2Aθ̄ψ̄ + θθA∗F + θ̄θ̄F ∗A+ θσµθ̄(−iA∗∂µA+ iA∂µA

∗ + ψσµψ̄)

+
i√
2
A∗(θθ)(∂µψσ

µθ̄) +
√
2(θθ)(θ̄ψ̄)F − i√

2
(θθ)(ψσµθ̄)∂µA

∗

+
i√
2
(θ̄θ̄)(θσµψ̄)∂µA+

√
2(θ̄θ̄)(θψ)F ∗ − i√

2
(θ̄θ̄)(θσµ∂µψ̄)A

+ (θθ)(θ̄θ̄)

(
−1

4
A∗□A− 1

4
A□A∗ − i

2
∂µψσ

µψ̄ + F ∗F +
1

2
∂µA

∗∂µA+
i

2
ψσµ∂µψ̄

)
. (53)

The product Φ̄Φ is neither a chiral nor the anti-chiral field, since it do not satisfy any of constrains
introduce above. This superfield is a real field. Its highest component θθθ̄θ̄ is known as D−
term and it transforms as space–time derivative under SUSY.

3.4 Wess–Zumino model

We want to construct a Lagrangian that is SUSY invariant and renormalizable for chiral and
anti-chiral fields. First, we consider only one superfield Φ. The Φ̄Φ|θθθ̄θ̄ term is a kinetic term

Φ̄Φ|θθθ̄θ̄ = −1
4
A∗□A− 1

4
A□A∗ − i

2
∂µψσ

µψ̄ + F ∗F + 1
2
∂µA

∗∂µA+ i
2
ψσµ∂µψ̄

= −A∗□A+ iψ̄σ̄µ∂µψ + F ∗F , (54)

where we discard surface terms.
The term ΦΦ|θθθ̄θ̄ is SUSY invariant. However, it is itself a derivative term, so it does not

contribute to the Lagrangian. Consider therefore the SUSY invariant term ΦΦ|θθ:

ΦΦ|θθ = 2AF − ψψ . (55)
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There is one more renormalizable term, namely Φ3|θθ:

Φ3|θθ = 3A2F − 3Aψψ . (56)

The higher order terms in chiral fields are not renormalizable. Thus, SUSY invariant Lagrangian
is given by

L = Φ̄Φ|θθθ̄θ̄ +
(1
2
mΦ2|θθ +

1

3
λΦ3|θθ + h.c.

)
, (57)

where m and λ are coupling constants is SUSY invariant. In terms of component fields, the
Lagrangian reads:

L = −A∗□A+ iψ̄σ̄µ∂µψ + F ∗F

+
m

2
(2AF − ψψ) +

m

2
(2A∗F ∗ − ψ̄ψ̄) + λ(A2F − Aψψ + A∗2F ∗ − A∗ψ̄ψ̄) . (58)

This is the Lagrangian that is SUSY invariant and renormalizable. It is called Wess-Zumino
model. This model was constructed in 1974 by J. Wess and B. Zumino. It was the first four
dimensional supersymmetric model. The fields F and F ∗ are auxiliary fields, since Lagrangian
does not contain their derivatives. These fields can be eliminated from Lagrangian using the
equation of motion

F = −mA∗ − λA∗2 .

In this way we obtain so called ’on-shell’ Lagrangian:

L = ∂µA
∗∂µA+ iψ̄σ̄µ∂µψ − |mA+ λA2|2 − 1

2
mψψ − 1

2
mψ̄ψ̄ − λAψψ − λA∗

i ψ̄ψ̄ . (59)

More general, with more than one chiral superfield, Lagrangian is

L = Φ̄iΦi

∣∣∣
θθθ̄θ̄

+ (W [Φi]|θθ + h.c.) , (60)

where the superpotential W is an analytic function of the chiral superfields:

W [Φi] =
1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk . (61)

The quantities mij and λijk are some totally symmetric constant coefficients. Lagrangian in
terms of component fields reads

L = ∂µA
∗
i∂

µAi+iψ̄iσ̄
µ∂µψi+F

∗
i Fi+

(
mijAiFj−

1

2
mijψiψj+λijkAiAjFk−λijkAiψjψk+c.c

)
. (62)

The previous Lagrangian gives the following equations of motion

□Ai = mijF
∗
j + 2λijkA

∗
jF

∗
k − λijkψ̄jψ̄k

iσ̄µ∂µψi = mijψ̄j + 2λijkAjψk

Fi = −mijA
∗
j − λijkA

∗
jA

∗
k. (63)
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The auxiliary fields Fi can be integrated out using equations of motion (63). In that way we
obtain

L = ∂µA
∗
i∂

µAi + iψ̄iσ̄
µ∂µψi − |mijAj + λijkAjAk|2

− 1

2
mijψiψj −

1

2
mijψ̄iψ̄j − λijkAiψjψk − λijkA

∗
i ψ̄jψ̄k . (64)

The last two terms are Yukawa interaction and we can define effective potential as:

V ≡ |mijAj + λijkAjAk|2 = |Fi|2 . (65)

3.5 Vector superfield

An irreducble multiplet can be obtained imposing the reality condition

V †(x, θ, θ̄) = V (x, θ, θ̄). (66)

This superfield is co–called the vector superfield. It has the following form

V (x, θ, θ̄) = C(x) +
√
2θχ(x) +

√
2θ̄χ̄(x) + θθM(x) + θ̄θ̄M∗(x) + θσµθ̄vµ(x)

+ (θθ)θ̄
(
λ̄(x)− i√

2
σ̄µ∂µχ(x)

)
+ (θ̄θ̄)θ

(
λ(x)− i√

2
σµ∂µχ̄(x)

)
+

1

2
(θθ)(θ̄θ̄)

(
D(x)− 1

2
□C(x)

)
. (67)

The reality condition implies C∗ = C, v∗µ = vµ and D∗ = D. A vector multiplet consists of 8
bosonic and 8 fermionic degrees of freedom.

The canonical dimension of a vector field is one, [vµ] = 1. Knowing [θ] = [θ̄] = −1
2
implies

[V ] = 0, (68)

and subsequently

[C] = 0, [χ] = [χ̄] =
1

2
, [M ] = [M∗] = 1, [λ] = [λ̄] =

3

2
, [D] = 2. (69)

Let iΛ be a chiral SF:

iΛ = f +
√
2θφ+ θθF − i(θσµθ̄)∂µf − i√

2
θθ(θ̄σ̄µ∂µφ)−

1

4
(θθ)(θ̄θ̄)□f . (70)

The following combination is a vector SF:

iΛ− iΛ† = 2Ref +
√
2θφ+

√
2θ̄φ̄+ θθF + θ̄θ̄F ∗ + 2(θσµθ̄)∂µImf

− i√
2
(θθ)(θ̄σ̄µ∂µφ)−

i√
2
(θ̄θ̄)(θσµ∂µφ̄)−

1

2
(θθ)(θ̄θ̄)□Ref. (71)

We define a super-gauge transformation for the vector superfield in the following way:

V ′(x, θ, θ̄) = V (x, θ, θ̄) + i(Λ(x, θ, θ̄)− Λ†(x, θ, θ̄)), (72)
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where Λ(x, θ, θ̄) is a chiral superfield.
Under the super–gauge transformations the components of a vector superfield transform as

C −→ C + 2Ref,

χ −→ χ+ φ,

M −→M + F,

vµ −→ vµ + ∂µ(2Imf),

λ −→ λ,

D −→ D. (73)

The fields λ and D are gauge invariant, while vµ transforms as the usual gauge field with U(1)
gauge parameter 2Imf . This means that the super-gauge symmetry is larger then usual gauge
symmetry.

The super-gauge symmetry can be fixed by the following choice of parameters

−2Ref = C, φ = −χ, F = −M . (74)

This gauge choice is known as Wess-Zumino gauge. In the WZ gauge a vector superfield is given
by

VWZ = θσµθ̄vµ + (θθ)(θ̄λ̄) + (θ̄θ̄)(θλ) +
1

2
(θθ)(θ̄θ̄)D . (75)

Supersymmetry does not preserve WZ gauge, i.e. a supersymmetric transformation of a vector
superfield in Wess-Zumino gauge gives a superfield which is not in this gauge. However, a suit-
able combination of supersymmetry transformation followed by a super–gauge transformation
preserves the Wess-Zumino gauge. The fields in the vector multiplet are: a vector gauge field
vµ, a gaugino, λα and an auxiliary field, D.

We can perform further transformations that leave us within the WZ gauge with

iΛ = iImf + θσµθ̄∂µImf − i

4
(θθ)(θ̄θ̄)□Imf. (76)

This transformation will not change the conditions C = χ =M = 0, and gives

vµ −→ vµ + ∂µ(2Imf), λ −→ λ, D −→ D , (77)

which is just the ordinary U(1) gauge transformation.
It easy to prove that

V 2
WZ(x, θ, θ̄) =

1

2
(θθ)(θ̄θ̄)vµ(x)v

µ(x) (78)

V n
WZ(x, θ, θ̄) = 0, n ≥ 3 . (79)

So, we find

eVWZ = 1+ VWZ +
1

2
V 2
WZ = 1+ θσµθ̄vµ + (θθ)(θ̄λ̄) + (θ̄θ̄)(θλ) +

1

2
(θθ)(θ̄θ̄)

(
D +

1

2
vµvµ

)
. (80)
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3.6 Lagrangian for Abelian gauge theory

In order to construct a kinetic term for a vector superfield, we have to find a supersymmetric
analog of the field strength. Abelian field strength superfields are

Wα = −1

4
D̄2DαV, W̄α̇ = −1

4
D2D̄α̇V . (81)

One can check that both Wα and W̄α̇ are gauge invariant quantities:

Wα = −1

4
D̄2DαV −→ −1

4
D̄2Dα(V + iΛ− iΛ†)

= Wα − i

4
D̄2DαΛ

= Wα − i

4
D̄β̇D̄

β̇DαΛ

= Wα − i

4
D̄β̇

(
{D̄β̇, Dα} −DαD̄

β̇
)
Λ

= Wα +
i

4
D̄β̇{D̄β̇, Dα}Λ

= Wα +
i

4
D̄β̇
(
2i(σµ)αβ̇∂µΛ

)
= Wα − 1

2
(σµ)αβ̇∂µD̄

β̇Λ

= Wα (82)

and satisfy D̄α̇Wα = DαW̄α̇ = 0. Wα and W̄α̇ are a chiral and an antichiral spinorial superfields.
It can be proven that

Wα = λα(y) + θαD(y) + i(θθ)σµ
αα̇∂µλ̄

α̇(y)− i(σµνθ)αFµν(y) , (83)

W̄α̇ = λ̄α̇(y
†) + θ̄α̇D(y†)− iϵα̇β̇(σ̄

µν θ̄)β̇Fµν(y
†)− i(θ̄θ̄)(∂µλ(y

†)σµ)α̇ , (84)

where Fµν = ∂µvν − ∂νvµ . It can be shown that

WαWα

∣∣∣
θθ

= iλσµ∂µλ̄− i∂µλ̄σ̄
µλ+D2 − 1

2
F µνFµν + i

1

2
F µνF̃µν , (85)

where F̃µν = 1
2
ϵµνρσF

ρσ is the dual tensor of Fµν . The last term in (85) is a total derivative.
Lagrangian for the pure super Abelian gauge theory is given by

L =
1

4

(
WαWα

∣∣∣
θθ
+ W̄α̇W̄

α̇
∣∣∣
θ̄θ̄

)
= −1

4
F µνFµν + iλσµ∂µλ̄+

1

2
D2, (86)

up to a total derivative term. The first term in (86) is Maxwell action.
Next, let us consider a coupling of the Abelian gauge superfield, V to chiral superfields, Φi

Under the Abelian super-gauge transformation the chiral and antichiral superfields transform as

Φ′
i = e−2igtiΛΦi, (87)
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Φ̄′ = e2igtiΛ
†
Φ̄i, (88)

where ti is (real) charge of superfield Φi. The term Φ̄iΦi is not super–gauge invariant, but the
term Φ̄ie

2gtiVΦi is:

Φ̄ie
2gtiVΦi → Φ̄ie

2igtiΛ
†(z)e2gti(V+iΛ−iΛ†)e−2igtiΛ(z)Φi (89)

= Φ̄ie
2gtiVΦi . (90)

In the WZ gauge only three terms in expression Φ̄ie
2gtiVΦi do not vanish:

Φ̄ie
2gtiVΦi|WZ = Φ̄iΦi + 2gtiΦ̄iVWZΦi + 2g2t2i Φ̄iV

2
WZΦi . (91)

It can be shown that the highest component of Φ̄ie
2gtiVΦi is given (up to total derivative terms)

by

Φ̄ie
2gtiVWZΦi|θθθ̄θ̄ = F ∗

i Fi + (DµiAi)(Dµ†
i A

∗
i ) + iψiσ

µD†
µiψ̄i

+ gtiD|Ai|2 − g
√
2[(ψ̄iλ̄)Ai + (ψiλ)A

∗
i ] , (92)

where we introduce covariant derivatives as

DµiAi = (∂µ + igtivµ)Ai (93)

Dµiψi = (∂µ + igtivµ)ψi . (94)

The action is

S =

∫
d4x

(
Φ̄ie

2gtiVΦi|θθθ̄θ̄ +
1

4
WαWα|θθ +

1

4
W̄α̇W̄

α̇|θ̄θ̄ +W [Φi]|θθ + W̄ [Φ̄i]|θ̄θ̄
)
. (95)

The superpotential W (Φ) has to respect super-gauge symmetry. Now, we can write down the
full Lagrangian in components forms

L = F ∗
i Fi + (Dµ

i Ai)
∗(DµiAi) + iψiσ

µD†
µiψ̄i + gtiDA

∗
iAi −

√
2gti[(ψ̄iλ̄)Ai + (ψiλ)A

∗
i ]

+1
2
D2 − 1

4
FµνF

µν + iλσµ∂µλ̄

+Fi
∂W
∂Ai

− 1
2

∂2W
∂Ai∂Aj

ψiψj + F ∗
i

∂W̄
∂A∗

i
− 1

2
∂2W̄

∂A∗
i ∂A

∗
j
ψ̄iψ̄j . (96)

Here, we can use the equations of motion to integrate out auxiliary fields:

Fi = −∂W̄
∂A∗

i

F ∗
i = −∂W

∂Ai

D = −gtiA∗
iAi . (97)

Substituting these results in (96) we obtain the on-shell Lagrangian:

L = −
∣∣∣∂W∂φi

∣∣∣2 + (Dµ
i Ai)

†(DµiAi) + iψiσ
µD†

µiψ̄i − 1
2
(gtiA

∗
iAi)

2 −
√
2gti[(ψ̄iλ̄)Ai + (ψiλ)A

∗
i ]

−1
4
FµνF

µν + iλσµ∂µλ̄− 1
2

∂2W
∂Ai∂Aj

ψiψj − 1
2

∂2W̄
∂A∗

i ∂A
∗
j
ψ̄iψ̄j . (98)

In this theory A is a scalar, λ is a gaugino and ψ is a chiral fermion.
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3.7 Super Quantum Electrodynamics

Super QED is a supersymmetric extension of the standard QED. Let Φ+ = (A+, ψ+, F+) and
Φ− = (A−, ψ−,Φ−) be two chiral superfields with charges q and −q. Under U(1) super–gauge
transformations they transform as follows

Φ+ → Φ′
+ = e−2iqΛ(z)Φ+ , (99)

Φ− → Φ′
− = e2iqΛ(z)Φ− . (100)

The action is given by

S =

∫
d8z
(
Φ̄+e

2qVΦ+ + Φ̄−e
−2qVΦ− + δ(2)(θ̄)(

1

4
WαWα +mΦ+Φ−)

+ δ(2)(θ)

(
1

4
W̄α̇W̄α̇ +mΦ̄+Φ̄−

))
. (101)

Note that the mass terms mΦ±Φ± are absent since they are not the super gauge invariant. The
Lagrangian in component form is given by

L = |F+|2 + |DµA+|2 + iψ+σ
µD†

µψ̄+ −
√
2q[(ψ+λ)A

∗
+ + h.c.] + qA∗

+A+D

+ |F−|2 + |DµA−|2 + iψ−σ
µDµψ̄− +

√
2q[(ψ−λ)A

∗
− + h.c.]− qA∗

−A−D

+
1

2
D2 − 1

4
FµνF

µν + iλσµ∂µλ̄+m(A+F− + A−F+ − ψ+ψ−) +m(A∗
+F

∗
− + A∗

−F
∗
+ − ψ̄+ψ̄−) .

(102)

Substituting the equations of motion

F± = −mA∗
∓ (103)

D = −qA∗
+A+ + qA∗

−A− (104)

into Lagrangian in (102) we obtain the on-shell Lagrangian:

L = −1

4
FµνF

µν + iλσµ∂µλ̄+ iψ+σ
µD†

µψ̄+ + iψ−σ
µDµψ̄− + |DµA+|2 + |DµA−|2

− q

2
(A∗

+A+A
∗
−A−)−m2(A∗

+A+φ
∗
−A−)−m(ψ+ψ− + ψ̄+ψ̄−)

−
√
2q[(ψ+λ)A

∗
+ + (ψ̄+λ̄)A+ − (ψ−λ)A

∗
− − (ψ̄−λ̄)A−] , (105)

where
D = ∂µ + iqAµ . (106)

We introduce Dirac spinor for matter fields:

Ψ =

(
(ψ+)α
(ψ̄−)

α̇

)
(107)
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and the Majorana spinor for gaugino field

λM =

(
λα
λ̄α̇

)
. (108)

In terms of Dirac and Majorana spinors Lagrangian (105) reads

L = −1

4
FµνF

µν +
i

2
λMγ

µ∂µλ̄M + iΨ̄γµDµΨ−mΨ̄Ψ

+ |DµA+|2 + |DµA−|2 −m2(|A+|2 + |A−|2)−
q

2
(|A+|2 + |A−|2)2

−
√
2q(A∗

+λ̄MΨL − A−λ̄MΨR + c.c) . (109)

3.8 Non-Abelian Super–Yang-Mills theories

In the previous section we discussed the supersymmetric U(1) gauge theories. Now, we generalize
the Abelian symmetry to the non–Abelian one. Let us consider a simple connected group G.
The hermitian generators of G are T a and they satisfy

[T a, T b] = ifabcT c , (110)

where fabc are structure constants. Chiral superfields transform under rigid transformations as
follows

ΦI = exp(−igΛaT a)IJΦJ ,

where Λa are constant real parameters and g is a coupling constant. The kinetic term Φ̄IΦI is
invariant under the rigid transformations.

To localize this symmetry in the superspace, the parameters Λa have to become chiral func-
tions. The superfields, ΦI and Φ̄I transform under gauge transformation in the following way

Φ′
I = exp(−igΛ)IJΦJ , Φ̄′

I = Φ̄J exp(−igΛ†)JI , (111)

where Λ = 2gΛa(x, θ, θ̄)T a,Λ† = 2gΛa∗(x, θ, θ̄)T a are the chiral and antichiral superfields. The
term Φ̄IΦI is not gauge invariant. To recover invariance we introduce a vector (or gauge or
Yang-Mills) superfield V = 2gV aT a. It is a Hermitian matrix transforming under the adjoint
representation of G. In order for the term Φ̄I(e

V )IJΦJ to be invariant under super-gauge trans-
formation, the super–gauge transformation of the vector superfield has to be given by

e+V ′
= e−iΛ†

e+V e+iΛ . (112)

Writing V ′ = V + δV, where δV is an infinitesimal change of vector superfield in the first order
in Λ, we obtain

eV+δV − eV = δV +
1

2
(V δV + δV V ) +

1

6
(δV V 2 + V δV V + V 2δV ) + . . . . (113)

On the other hand, from (112) it follows

eV+δV − eV = eV iΛ− iΛ†eV = iΛ− iΛ† + V iΛ− iΛ†V +
i

2
V 2Λ− i

2
Λ†V 2 + . . . . (114)
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To solve these equations we assume that δV is a expansion in powers of V

δV = δV (0) + δV (1) + δV (2) + . . . . (115)

The term δV (n) is n−th order in power of the vector superfield.
Comparing (113) and (114) we find

δV (0) = i(Λ− Λ†),

δV (1) =
i

2
[V,Λ + Λ†],

δV (2) =
i

12
[V, [V,Λ− Λ†]] . (116)

Collecting these terms together we obtain

δV = i(Λ− Λ†) +
i

2
[V,Λ + Λ†] +

i

12
[V, [V,Λ− Λ†]] + . . . , (117)

or in component notation

δV a = i(Λ− Λ∗)a − gfabcV b(Λ + Λ∗)c − i

3
g2fdbcfaedV eV b(Λ− Λ∗)c +O(V 3) . (118)

It can be shown that we can impose the Wess–Zumino gauge

VWZ = (θσµθ̄)vµ + (θθ)(θλ) + (θ̄θ̄)(θλ) +
1

2
(θθ)(θ̄θ̄)D . (119)

We use the notation vµ = 2gvaµT
a, D = 2gDaT a . . . where vaµ are the gauge fields. The Wess-

Zumino gauge does not fix super–gauge symmetry completely. The super–gauge transformations
determined by

iΛ = iImf + (θσµθ̄)∂µImf − i

4
(θθ)(θ̄θ̄)Imf (120)

preserve WZ gauge. This residual symmetry corresponds to usual gauge symmetry. The vector
superfield transformation is given by:

δVWZ = i(Λ− Λ†) +
i

2
[VWZ,Λ + Λ†] . (121)

To find the Lagrangian for super Yang–Mills fields we introduce two new superfields

Wα = −1

4
D̄2
(
e−VDαe

+V
)
, W̄α̇ = +

1

4
D2
(
e+V D̄α̇e

−V
)
. (122)

It is clear that Wα and W̄α̇ are chiral and antichiral superfields, respectively. The superfield
strength Wα can be expanded in V :

Wα = −1

4
D̄2DαV − 1

8
D̄2[DαV, V ]− 1

24
D̄2[[DαV, V ], V ] + . . . . (123)
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In the Abelian case this expression reduces to Wα = −1
4
D̄2DαV , as we expected. It can be

shown that Wα transforms covariantly under the super–gauge transformations:

Wα −→ e−iΛWαe
+iΛ . (124)

In the Wess-Zumino gauge we have

Wα = −1

4
D̄2DαVWZ −

1

8
D̄2[DαVWZ, VWZ] . (125)

Finally, we arrive at Wα = 2gW a
αT

a, where

W a
α = λaα(y) + θαD

a(y) + iθθ(σµDµλ̄
a(y))α − i(σµνθ)αF

a
µν(y) . (126)

The term Tr(WαW
α) is super–gauge and Lorentz invariant. Its θθ component is invariant under

supersymmetry. Therefore, the Lagrangian for the super-non-Abelian gauge field is

L =
1

16g2k
Tr
(
WαWα

∣∣∣
θθ
+ W̄α̇W̄

α̇
∣∣∣
θ̄θ̄

))
(127)

= −1

4
F a
µνF

µν
a + iλaσµ(Dµλ̄)

a +
1

2
DaDa, (128)

where

(Dµλ̄)
a = ∂µλ̄

a − gfabcvbµλ̄
c ,

F a
µν = ∂µv

a
ν − ∂νv

a
µ − gfabcvbmv

c
ν ,

and the constant k is determined by Tr(T aT b) = 1
2
kδab .

Lagrangian (128) describes super-Yang-Mills theory without matter fields. The Lagrangian
for matter sector is given by

Lmatter = Φ̄eVΦ
∣∣∣
(θθ)(θ̄θ̄)

+W (Φ)
∣∣∣
θθ
+ W̄ (Φ̄)

∣∣∣
θ̄θ̄
, (129)

where the superpotential W (Φ) is a gauge invariant quantity i.e. it belongs to a singlet repre-
sentation of G.

In the Wess-Zumino gauge the kinetic term for matter fields, Φ̄eVΦ = Φ̄I(e
V )IJΦJ is given

by

Φ̄eVΦ = Φ̄Φ + Φ̄V Φ +
1

2
Φ̄V 2Φ. (130)

Its D-component is

Φ̄eVΦ
∣∣
(θθ)(θ̄θ̄)

= F ∗F + (DµA)†(DµA)− iψ̄σ̄µDµψ + gA∗DA−
√
2gA∗(ψλ)−

√
2g(ψ̄λ̄)A, (131)

where:
DµA = (∂µ + igvaµT

a)A, Dµψ = (∂µ + igvaµT
a)ψ. (132)
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Let us stress that the fields A,ψ and F transform under fundamental, while D,λ and vµ under
adjoint representation of G. Adding all terms together we obtain the off-shell Lagrangian:

L = −1
4
F a
µνF

µν
a − iλ̄aσ̄µDµλ

a + (DµA)
†(DµA)− iψ̄σ̄µDµψ

+gA†DaT aA−
√
2gψIλ

aT a
IJA

∗
J −

√
2gλ̄aψ̄IT

a
IJAJ

+
(
FI

∂W
∂AI

− 1
2

∂2W
∂AI∂AJ

ψIψJ + h.c.
)

+1
2
DaDa + F ∗

I FI . (133)
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