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1 Notation and conventions

1.1 Lorentz and SL(2,C) symmetries

In these lectures we use 'mostly minus metric’, i.e. g,, = diag(1,—1,—1,—1). Lorentz transfor-
mations leave metric unchanged, AT gA = g. The proper orthochronous Lorentz transformations,
Ll, consisting of boosts and rotations, satisfy the following two conditions:

detA=1, A% >1. (1)

These transformations are a subgroup of Lorentz group. Lorentz algebra has six generators,
M,, = —M,,. The commutation relations are

[(Myuws Mpo| = i(guo Mup + GupMuo — 9upMuo — Guo M) -

The generators of rotations are J; = %eijijk, while generators corresponding to the boosts are
Ni = My,,. Further, one can introduce the following complex combinations A; = %(JZ +1N;) and
B, = %(Jl —iN;). It is easy to prove that

[Ai, Aj] = i€y A, [By, Bj) =ieyBi, [A;,Bj]=0.

This is a well-known result which gives a connection between the Lorentz algebra and ”two”
SU(2) algebras. Irreducible representations (i. e. fields) of the Lorentz group are classified by
two quantum numbers (j1, jo) which come from above two SU(2) groups. L is double connected
(due to SO(3) subgroup) and non-compact group.

To discuss its representations one has to consider its universally covering group, SL(2,C).
SL(2,C) is the group of 2 x 2 complex matrices with unit determinant. Pauli matrices are given
by

ot =(1,0), " =(1,—0),

0 1 0 —z 1 0
0'1:(1 0), O'QZ(Z. O)and 0'3:(0 _1)

where



To find the connection between SL(2, C') and Ll we define one-to-one map between Minkowski
coordinates, x* and 2 x 2 Hermitian matrices:

N g oot — Xt — To+ T3 T1 — 1T9 (2)
i To+iry x9—123 )

Let us now transform X to another Hermitian matrix in the following way X — X' = M XM,
where M € SL(2,C). This transformation preserves the interval, i.e.

det X' = det X < 2% = 2%

From 1 1
o = STH(EX) = T (5“M0VMT>x” = A" g, (3)

it follows that 1
Ny = ST (5“MJVMT>.

The mapping M — A(M) is 2 — 1 homomorphism between SL(2,C) and Ll. This mapping
is not an isomorphism since matrices =M correspond to Lorentz matrix A. SL(2,C) is simply
connected, so it is the universal covering group of Ll.

1.2 Representations

A left-handed Weyl spinor, 9, (x) is two component object, which transforms in the following
way

Ui (Aw) = M, s(x) (4)

under SL(2,C) transformations. The matrix M belongs SL(2,C) group. Indices o and § take
values 1, 2. In Quantum Field Theory v, (x) is an operator. Its transformation law under Lorentz
transformations is

U™ (A)vha(@)U(A) = M ys(A" ") . (5)

Let us define ¥4 = (¥, ), where dagger denotes Hermitian conjugation of the field operator.
If v, is a classical Grassmann field, we use complex conjugation, i.e. 14 = (14)*. The complex
conjugation is defined in a such way that it has properties similar to the hermitian conjugation.
For example, both of them reverse the order of fermions. The complex conjugate representation
is

W= (M) Ly . (6)

QZB is a right—handed Weyl spinor or dotted spinor. Left-handed spinor v,, is also called undotted
spinor. These two representations of SL(2,C') are inequivalent.
Now, we introduce invariant tensors for SL(2,C). Antisymmetric tensors are defined by

w=w=(1 o) )



a af - — 0 1
e = — e = (e = () ) )
It is easy to prove €,5¢”? = 07 and edﬁeﬁﬁ = 6] . From
EangaM(;ﬂ = €46 det M = €46 (9)

it follows that e, is an invariant tensor. Similarly, €7, €, and €% are invariant tensors. The
invariant tensors are used for lowering or raising spinor indices:

@Da = 604,31/]5’ wa = Eaﬂwﬁ 5 (10>
O = Py, e = e 50° (11)

Let us find the transformation law for ¢*:

e = eyl = e

= (e IME) 51/16
= (MTH%0 . (12)

Spinors 1, and ¢ transform according to equivalent representations. Similarly, we get
PO = () $° (13)

i. e. spinors 14 and ¥® transform under equivalent representations. The fields ¥* and 1, are
right-handed Weyl spinors. Undotted and dotted representation are very often called funda-
mental and antifundamental representations. The left-handed (or undotted ) spinors are (3,0)
irreducible representation, while right-handed (or dotted) spinors are (0, 3).
Multiplying these spinors with each other we get higher spinors. They have dotted and
undotted indices, Yq, .. .anay..4,, and transform as follows
oo ana, = MM (M) P (M) S

aq...QnQq...0m

am w/gl 6nﬁl Bm
These spinors are generally reducible. The irreducible spinors are ¥a,....an)(@1,...am)s Where (..)

202
list some important irreducible representations:
e (0,0) scalar or singlet representation
e (1/2,0) left—-handed Weyl spinor
e (0,1/2) right-handed Weyl spinor
e (1/2,1/2) vector
e (1,0) self-dual tensor
(O, 1) antiself-dual tensor.
From Mo*M' = (A~')* o# follows that matrices o# are invariant tensors. The matrix o*
has the following spinorial indices

denotes symmetrization. They belong to (ﬂ m) irreducible representation of SL(2, C). Let us

ol . (14)



Raising the spinorial indices on ¢* we obtain
(5u>dﬁ — Edﬁeﬁva% — (au)ﬁd )
It is easy to show . .
(0% = (1,~0)*.
The matrices o* and ¢* satisfy the following identites:

Tr(cta") = 29"

UZa(5u)ﬂﬁ = 5555
Uga(‘}u)m = —2€,43€a8
("5 + o"5") P = 29" 6" .

Transformation laws for quantum Weyl fields are:

U AU = MPus(A ), (5,0)
U EUA) = (M)A, (5,0)
U WU = ()T, (0,5)
U NE@UR) = (AP ), (0,5),

where M € SL(2,C).

1.3 Dirac and Majorana spinors

Weyl representation of y* matrices is given by
0 ot
n—
(o 9)

. ~1 0
v5 = i’y Pyt = ( 0 1) .

~v5 matrix is defined by
Dirac spinor is

and it belong to the reducible representation (0, ) @ (3, 0).
Adjoint Dirac spinor is

Up =18 =(x* @¢a)



where

= ()-(2 %) e

The matrices 4° and 3 are numerically equal, but have different spinorial structure.
Majorana spinor satisfies the condition ¥, = C'W%  were C' = i7°4? is the charge conjugation

matrix. It is easy to show that
€ap 0
C = 5] .
(7 )

Majorana condition leads to ¥, = X, S0 Majorana spinor is

Ty = (:/23) . (27)

1.4 Generators in (anti)fundamental representations

Under Lorentz transformation Dirac spinors transform as

Yp(Az) = =i () | (28)
The matrices >*" are .
7 o 0
il o) 2N TR R
= = =i (% ) (20)
where
ot :i(aua”—a"c’r“)
o = 1(oto¥ —avot)

by

(M*—l)Béc _ <€§wuuauu>a5' (30>

Matrices io"” and iG"* are generators of Lorentz group, and they satisfy!

o o
€pvpoT” = 2io,,
—po .
€upe0’’ = =210, . (31)
1 . S : 0123 _ _
We use the convention in which € = —€g123 = +1



o and " are a self-dual tensor and an anti-self-dual tensor, respectively. We can define

(0"7€)ap and (e6"”),; by
(0" €)ap = (") €45

(€5W)o‘1,3 = Eo‘d(ﬁw)vﬁ' :

They satisfy

(0" €)ap = (0"€)pa
(€6")ep = (€0")s6 -
1.5 Bilinear quantities
Weyl spinors anticommute, i.e
1/}aXB = _Xﬁwa .

Let us define the product of Weyl spinors in the following way

VX =V Xa = ¥ X1 + VX2 = Yox1 — YiXz -

Similarly, we introduce

VY = YaX”

(32)
(33)

(35)

(36)

(37)

In our convection dotted indices are contracted from lower left to upper right, while undotted
indices are contracted from upper left to lower right. ¢y and ¢y are invariant under SL(2,C).

Four-vectors and tensors are defined as

TR

Yoty = YPoaX

por'x = a(d")* Xa
oy = (") xs
Yty = &a(auy)dgiﬂ-

The bilinear quantities defined above satisfy the following properties:

X = X9,
X = XP,
pot'x = —xo'y,
pot'a"x = xo"a"p,
pota’y = XG'o'p,
pa'’x = —xo"p,
pot'y = —xo"g,
e = 0,
p"e = 0.

(38)

(39)



Pauli matrices are hermitian. Their complex conjugation gives

(0")" = €apesal6”) = s = ol |
(5ud5)* _ eav%é(au)w _ ghab _ Guba
Taking complex conjugation of Lorentz generators we obtain
o= =)
;= ™)
The following relations are useful:
((0"€)ap)” = (5") g »

((€6")4p)" = (0"7€)a
Hermitian conjugation changes the order of spinors. For example:

(X)) = (1 xa)T = Xa¥® = —0%Xa = ¥X -

The following identities can be shown similarly:

W) = ¥x,
(Yo'x)t = xo',
(orx) = o',
(o )T = vy,
(o)t = oy .

1.6 Identites with o matrices

The list of useful identities with o matrices is given below:
Tr(o*a") = 2¢"
ot (@) = 626,
UZ@(@)BB = _2%56045
(ota” + o¥a") P = 29" P
(ato” + 5”0“)% = 29‘“’55
(0"5")] = "5 + 2(a™) ]

(a%0™)% = "84 +2(5™)% .

(46)



From

VYN =(9"9" = 979" + ¢"7 9" ) +ie” P57,

it follows

ohGVoP = goP — ghPa? + gPPot — (e7MPg,

Gho'al = g — gty + gvPat + ieTMPG,
The trace identities are:

TH(o™0™) = £ (970" — 94" + i)

TH(e™0") = 5 (774" — """ — i) |

DO o =

1.7 Fierz identities

(55)

(56)

(57)

Fierz identities are very helpful in calculations with spinors. The following relations can be easily

obtained

1
0°0° = —§eaﬁee

(60)(00) = —5(68)(00),
#9)80) = ~5(E)(50),
(000)(05"8) = 5" (66)(60),
(00"0)0, = —%agﬁ.éﬁ'(ee),

_ 1 __
05"0)0, = —o".0°(00),
9~ Ba

E)(xo"F) = —5() (D),
BN (0"0) = —5(00)(xo"N)
(00 9) (60" %) = (60)(0" "),

(58)

(59)

(60)



Xa(§n) + &a(m0) + 1a(x§) = 0, (62)
Xa(€) + Ea(1X) + 71a(X€) = 0 . (63)
As a example, let us check (60). Applying (58), the left hand side of (60) becomes

(00)(00) = £e(00) s = —5(00)(00) (64)

Remaining identities can be proven in a similar way.
Let us generalize identities (58-59) to the case of two different spinors. We obtain

butla = 500" D) (01)as (65)
1 1

YaXxp = EEaB@/JX + §(¢UWX)(UW€)0¢B

_ 1 _ 1 _

%)Zg = _5 d/ﬂb)? + §(Xalww) (55'#1/)5@ . (66)

Let us prove (65). The left hand side of (65) is a product of dotted and undotted spinors. Since

1 1 11
(570) ® (07 2) - (ia _)
we can assume B
0a¢d = Auo-uao'z 5 (67)

where A* is a four-vector. Multiplying (67) by 6V%* we obtain
1 _
At = iﬁa“w .

1.8 Partial derivatives
Partial derivatives with respect to the anticommuting variables are denoted by

0 e 0 5 0 44 0
801—%,8 —8—0&, 8d—a§d,8 —ae—d. (68)

Indices on partial derivatives are lowered or raised by e— symbol. Note that, there is one extra
minus sign:

8a = —Eagaﬁ,aa = —6“58[3
Dg = —edgég,éd = —ed‘BéB : (69)

The following derivatives are frequently used:



0,(00) = 26, (72)
0a(00) = —20, (73)
0°(06) = —26° (74)

0%(h0) = 26~ (75)

(80)(00) = 9°0,(69) = 4 (76)
(00)(00) = 0,0%(00) = 4 . (77)

Complex conjugation of derivative is defined by
(aa)* = _éd . (78)
This is in accordance with definition of conjugation

58 = (0,0°)" = 0P(0,)" = —(0a)"0° = 0:0° . (79)

2 Supersymmetric algebra

2.1 N =1 Super—Poincare algebra

To start with, let us state the Coleman-Mandula theorem:

Only possible Lie symmetry of a nontrivial S matrix is a direct product of Poincare and
internal symmetry.

The assumptions in Coleman-Mandula theorem are the following: the particles are massive,
theory is local, unitary and relativistic covariant. Thus, generators of the Lie symmetry are:
momenta, P*, angular momenta, M, and bosonic generators B”. These bosonic generators are
Lorentz scalars.

This theorem can be evaded using the graded Lie symmetry instead of the usual Lie symmetry.
The graded Lie algebra is a generalization of Lie algebra, containing bosonic and fermionic
generators. The graded vector space (precisely Zs graded) is a direct sum

V:Lo@Ll.

The elements of Ly are bosons or even elements, while the elements of L; are fermions or odd
elements. The grading is defined by

0, X €L
| X| = : (1)
1, Xel,

Between elements of the graded vector space Lie product [, } is defined, with the following
properties:

LX,Y) = (<)M, X}
2. ()NIAX, [, 23+ ()N 2, X + () Z X Y =0 @)

10



The Lie product of two bosons or one fermion and one boson is a commutator. In the case two
fermions Lie product is an anticommutator, i.e.

[B17B2} = [BluB2]7 [BlyFl} = [B17F1]7 [F17F2} = {F17F2} . (3)

The second property is super-Jacobi identity.

Super—Poincare algebra is an extension of Poincare algebra which includes the fermionic
generators in addition to the bosonic ones. These fermionic generators transform bosonic state
into fermionic and vice verse. The fermionic generators are left-handed and right-handed spinors,
Q. and Q. This statement is known as the Haag Loppusanski-Sonius theorem.

The Lie product of generators is a commutator or anticommutator, and it must be linear in
terms of generators. First, we have to find [P,, Q,]. We assume that

[P, Q] = co” Q" (4)
From this expression it follows that
[P, Qb’} — c*&“B'YQ,Y . (5)
Applying super—Jacobi identity
[P#, [P, Qa]] + [P, [Qa; P!]] + [Qa, [P*, P]] = 0

we obtain
lc[*(6"") Qs =0,
and finally we conclude ¢ =0, i. e. [P,,Q,] = 0.
Since @, is a Weyl spinor, it transforms as follows

i

GQMHUM“”QQG_%WHVMV‘” _ (eéwuugﬂu> ﬁQB '
[e%
Expanding the previous expression in the first order in w,, we obtain
[M;Lw Qal = _i<UuV)aBQB . (6)
In the same way, one can show that
My, Q%) = =il(5,0)% Q" . (7)

Let us find the anticommutator {Q,,Qs}. Due to index structure this anticommutator has the
form

{Qaa Qﬂ} = d(o.#l/)aﬂle s (8)
where d is an arbitrary constant. Applying the super—Jacobi identity

[P, {Qa, Q7Y 4+ {Qa. [Q°, P} — {Q°, [P, Qu]} = 0

11



we find d = 0. Thus, {Q,, @°} = 0. Finally, we have to find {Q.,, QB} Taking into account the
index structure of this expression we find

{Qaa Qﬁ} = 2055PH . (9)

The factor 2 is fixed by a convection.
Simple (or N = 1) Super—Poincare algebra is

[Pu, P)] =0, (10)
[ vy ] = Z‘(gz/,opu - g,upPV)v (11)
(M, Mypo] = —=i(gupMuo + GuoMyup = GupMyuo — guo M), (12)
{QmQB} = {Qm@g’} =0,
{Qa,Qs} = 20%;P,, (13)
[Qa, Pl = [Qa, Pu] =0,
[Qas M) = i(0)a"Qs,

[QdaMuV] = Z(UW> BQﬁ'

2.2 Extended Super—Poincare algebra

Fermionic generators can have an additional index coming from some internal symmetry group:
QA (A =1,...,N). In this case N = 1 supersymmetry is extended to the N —extended
supersymmetry:

[Py, Bl =0, (14)
[Muw p] = i(ngP#_gupPV)7

(M, Mps] = —i(gupMoo + GuoMup — GupMpuo — guoM.p),

{Qa’QB} = EOé/BZABy

(0107} = e

{Q4.QFy = 20%%0%,,P,,

[ ﬁ?P#] = [727PM] :07
Q4 M) = i(o)a" Q5
[QdA7MW] = (Uur/) QﬂA
[BT7BS] _ ZfrstBt
B.QY) = —(07)4QS
[B".Q4] = Qac(0)%
(15)
Central charge, Z48 = —ZB4 commutes with all generators in the algebra. It is a linear

combination of the internal symmetry generators, Z4% = \MB"B,. The largest possible internal

12



symmetry group is U(N). If Z = 0, SUSY algebra is invariant under Q4 — U4 QP. If Z # 0,
{Q, @} relation spoils this invariance. In this case the algebra is invariant under some subgroup
of U(N). In N =1 SUSY, central charge is zero, Z = 0: there is only one index, so Z can’t be
antisymmetric. In this case, U(1) symmetry is called R-symmetry:

[QOH R] = QOH [Qd) R] = _Qo'c' (16>

3 Superspace and Superfields

In this section we introduce the concept of superspace. Fields on superspace are called super-
fields. Supersymmetry is realized as a translation in superspace.

A superspace is an extension of Minkowski space-time where we add four Grassmann coor-
dinates 6, 0, to the four bosonic Minkowski coordinates. These coordinates satisfy

[x“,aj’] = [z,,0.) = [x#’,é’ﬂ,: 0
{eaved} = {90”65} = {(90-[,(95} =0. (1)

Thus, superspace is parametrized by the coordinates: x*,6,,6,; . For later convenience we cal-
culate

£Q,0Q] =¢£°Qab:QY — 0:Q%Q,
= —£70:Q.Q% + 0:£*Q°Qq
= —£%0:{Qq, Q°}
= £0%{Qa, Qs }
= 2% .0°P, . (2)
In this part of Lectures, SUSY generators are denoted by @, Q. Any element of super—Poincare
group can be written in the form
ei(x“PH—i-Q“Qa—i-éd@d)e—%wf““M,“, ' (3)
We use the notation B ' o
G(.I’,@,@) — ez(x“Pu+90¢Qa+9an) ' (4)
Actually, G(x,6,0) is an element of the coset space

Super — Poincare group/Lorentz group .

A superspace can be realized as a coset space. For details, see [1, 5]. The product of two
elements, G(a,§,&)G(x,0,0) is found applying Baker—-Campbell-Hausdorff formula

1
cAeB — JA+B+5[ABl+..

and (2). The result is

G(a,&,6)G(x,0,0) = G(z" + a* +ilo™0 — i0a"E,0 + £,0 +€) . (5)

13



The left multiplication in the group induces the following transformation of supercoordinates:

ot = ah 4 St = ot at +ifotl — ifatE
0 — 0+¢
6 — 0+¢,
where ¢ is a constant parameter of SUSY transformation.

Under infinitesimal translation 2’ = x + a a classical scalar field ¢(z) transforms as ¢(z) —
¢ (x) = p(x — a). The form-variation of the scalar field is given by

op(r) = ¢'(x) — p(x) = —a"Oup() . (6)

From dp(z) = ia" P,y we conclude that P* = i0" is a representation of momenta in the space
of functions. The momentum is represented as a differential operator in accordance to quantum
mechanics.
In QFT a scalar field is an operator in Hilbert space. Transformation law under translations
is given by
p(r) = ¢'(z) = e Prp(a)e™ P = p(a —a) (7)

where P* are four-momenta. Then we obtain

op = ¢'(x) — p(x) = —i[a"P,, p] = —a"Oup . (8)

Generally, infinitesimal variation of field under transformations of symmetry is given by
o= il [ daj ©

where j° is zero component of the Noether current density. Variations of a quantum and clas-
sical field are related by the correspondence principle. If the canonical Poisson bracket of two

observable gives a third observable
{A,B}=C,

then after quantization the commutator of corresponding operators have to satisfy

N

—i[A,B]=C .

For details see the book [6]. B
A ’scalar’ superfield is a function of superspace coordinates, I’ = F'(x,0,0). A superfield can
be expanded in power series of 6 and # as

F(x,0,0) = f(z)+0¢(z) + 0x(z) + 00m(z) + 00n(z) + o 0v,, ()
+000\(x) + 000 (x) + 0000d(z). (10)

This expansion consists of finite number of terms, due to the anticommuting properties of 0, 0
coordinates. The coefficients f(z), ¢(x), x(x), m(z), n(x), v.(z), A(z), ¢(x) and d(z) in the
expansion (10) are usual fields in Minkowski space-time. Superfield (10) contains 16 fermionic

14



and 16 bosonic degrees of freedom. There is an equal number of bosonic and fermionic degrees
of freedom in any supersymmetric multiplet.

A superfield has to satisfy some transformation properties. Under super—Poincare transfor-
mation?

ot = 2 =gt — St =2t — at — ila"h + ihotE
0 — 0 =0-¢
0 — 0=0-¢, (11)
a classical scalar superfield transforms as
F'(2,0,0) = F(z + 62,0 + £,0 + &) . (12)
The infinitesimal variation of the superfield is given by

OF F'(z,0,0) — F(z,0,0)
= F(z+a"+ifo"0 —ifo"E,0 +€,0 + &) — F(x,0,0)
= (a" +i€0o"0 — i00"E) D, F + E*0nF + E50°F

= (0"0y +E°Qa + &QNF (13)
where we introduce the differential operators:

Qo = 0o +i(c"0),0,
QY = 0% +io"0,0, . (14)

From? 6F = —i(a" P, + £°Q, + £,Q%) F it follows

P, =id,, (15)
Qo = iQq = 10, — 0",0%0,, , (16)
Q% =iQ* = id* — (6"0)%0,. (17)

One can check that B . B

Qd = (Qa)T = EQBQIB = iQd 5
where Q4 = —0,4 — (00")50,. The operators P,, Q, and Q,, satisfy super-Poincare algebra, as
we expect. For example,

{Qom @d} = _{Qom Qd} = QUZdiaM = QUZdPM : (18)
Under supertanslation (11) the quantum superfield F(x,#, ) transforms as
ei(a”Pu-i-faQa'ng@d)F(l,’ 0, é)e—i(a“PM-&-&a@a-i-fa@d)

F(x + a" + ifo" — ifoh &, 0 + €,0 + €)
= F+46F. (19)

2Note minus signs in coordinate transformations.
3The parameters are —a, —&, —¢ .

15



Expanding the first line of (19) we obtain

F(x,0,0) +i[a"P, + £*Qqa + £:,Q%, F] . (20)

Q@ PAE Qat&aQY) P 9, §)o— (0" Put€ Qa+Eal®)

From the second line in (19) we again obtain
OF = (a0, + £*Qa + Q) F .
Under the SUSY infinitesimal transformation the variation of of quantum superfields is given by
0F = i[€"Qa + £aQ%, F] = (£°Qu + &Q)F . (21)

Applying (10) we find SUSY variations for components in supermultiplet:

0ef = Eo+Ex, (22)
dea = 26am+ 0" o8 (v, —i0,f). (23)
0eXa = 28an+ &0k (v +i0,f), (24)
Sem =~ £0"0,0, (25)
Ogn = 5@—%60“0ux, (26)
Sevy = Eo N+ o€ — %§JV6H8V¢+ %fayoua”x, (27)
S = 98— i(5"E) (Bm) — 5(0" 0 E) v, (28)
5epa = 2gad—w“m§daﬂn+%a”adaﬂdﬁgﬁauuy, (29)
Sed = —%ga“aNX+%augoa#§. (30)

Note that a SUSY variation of the highest component, d(z) is a total derivative.

Let us apply two successive supersymmetric transformations on a superfield, 6,,0¢ . Transfor-
mation with the parameter £, is followed by the second transformation with parameter n. The
second transformation acts only on the field F', i.e.

0y0¢F = 0,(6Q + EQ)F = (§Q + £Q)(nQ + nQ)F' .
A commutator of two SUSY transformations can be found easily. Result is given by
8, 0e) 7 = —2i(€0"5 — o &), F (31)

We see that commutator of two SUSY transformations is a translation, i.e. the supersymmetric
algebra is closed.

16



3.1 Covariant Fermionic Derivatives

Supercovariant derivatives are defined by
D, = 0, —ic" .00, (32)
D4 = —04 +i0%", .0, (33)

With a help of (9,)* = —04 and (0:‘;5)*9’3 = 04,07 we get (Do)* = Dy. Derivatives with upper
indices are

D* = PDy= 9" +if5"0,
DY = 0% —i0"*"*0,0, . (34)
The following anticommutation relations are very useful:

{DOM Dﬁ} = {deDB} = {Danﬁ} = {Daa Qo'z} = {Dén Qa} = {deQB} =0, (35)

{Qa,Qa} = —{Da, Ds} = —2i0", .0, (36)

One can check that: B B
D? =D“D, = —90“0,, — 2i0t 040,04+ 060 , (37)
D? = Dy D% = —0,0% — 2i6"0,0,04 + 0601 . (38)

3.2 Chiral and antichiral superfields

An arbitrary superfield (10) is a reducible supersymmetric multiplet. One can impose some
constraints on the superfield to get irreducible representations of supersymmetry. A chiral
superfield ®(z, 0, 0) is defined by the following constraint Ds®(x, 0, 0) = 0, and it is a irreducible
superfield. This constraint is compatible with supersymmetry;,

5¢(Da®) = Dy (6¢D), (39)

since supercovariant derivative anticommutes with supercharges.
We now want to solve this constraint. It can be proven that

DoF = Xo+ 0%, (V" +i0,f) + 2n0, + (00) (Ad — 25" qﬁ“)

+ (0o"0) (aﬂﬁdgoﬁ — %(81,)26#0”)@)

+2(00)0,d — %eaﬁ (00)0" 0" 670, v,

oo Bﬁ
+ i(00)60°0" 9,m — %(99)(@&)(75@0“90& . (40)
The condition DgsF = 0 implies
o 1
X=0, n=0, v,=—id.f, ¢=0, /\d:%agd W6, d=—70f . (41)

17



Introducing new notation:

f=4, =V, m=F (42)

a general expression for a chiral superfield is
O(x,0,0) = Ax)+V20(x) + 00F (x) — i05"00,A(x)

+ L (00)(0,0(x)0") — 2(60) (BE)DA(x) . (43)

V2
The chiral supermultiplet consists of a complex scalar field A (2 d.o.f.), a left-handed Weyl-spinor
Y, (4 d.o.f.) and a complex scalar field F' (2 d.o.f). Notice that the number of fermionic and

bosonic d.o.f. is equal.
By introducing chiral supercoordinate:

1
4

y" =" —i(6c"0) , (44)
we can rewrite the chiral superfield in the form:

(y,0) = Aly) + V20y(y) + 00F (y) . (45)

From general transformation rules (22-30), one can easily find transformation laws for compo-
nents of a chiral multiplet:

GA = V2ty,
5§¢a - \/ﬁFfa_i\/iauAggdgd7
0eF = iV20,1b0"€ | (46)

The components A, and F of a chiral multiplet transform into each other, so the multiplet
is irreducible. Also, we see that #0-component of a chiral superfield transforms into itself plus a
divergence term. 66 component of superfield is called F' term.

An antichiral superfield ¥(x,#, ) is determined by the condition

D,V (x,0,0) = 0. (47)

If ®(z,0,0) is a chiral superfield, than ®f(z,0,0) is antichiral. An antichiral superfield can be
expressed in y' = a# + i(fo*0) coordinate as follows

O(z,0,0) = A*(y") + V200 (y") + 00F" (') . (48)
Rewriting the antichiral superfield in terms of z, 8,8 coordinates we find

B(x,60,8) = A + V200 + BIF" + i, A*00"F — ——(30)(00", ) — iDA*(@@)(éé) o (9)

V2
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3.3 Products of Chiral and Antichiral SF

If ®; and @; are two chiral superfields, then their product ®;®; is again a chiral superfield since
D(®,9;) = (D5®;)®; + ®,D,P; = 0 . In components this product is

0,0; = (Aly) +V200uly) + 00F(y) ) (A;(5) + V20U5(9) + 00F; ()
= AA(y)+ \/59(141‘1/@ + A (y) + 00(F;A; + F; A — i) (y) (50)

where we apply (60). So, from two chiral multiplets we get another chiral multiplet with com-
ponents

(Ai, i, 7)) X (A, by, ) = (AiAj, Ay + A, AiFy + B A — i) (51)
And triple product of chiral multiplets is again a chiral multiplet:

(Ai, ¥, Fi) X (A, 0y, Fy) X (A, Yr, F) =
(AZ'AJ', Azwg + Aj'(ﬂi, Azﬂ + EAJ — 1/)17#]) X (Ak, 2/};6, Fk)

The product of a chiral and an anti-chiral superfied is

OO = A*A+ V2A*0) + V2A0¢ + 0OA*F + 00F* A + 00"0(—iA*0, A + iAD, A" + o ,)

+ ﬁA*(ee)(amue) +V/2(00)(0))F — E(ae)waue)@m
+ E(ee)(eaﬂwaﬁ +v2(00)(6y) F* — E(@@)(@a“@zﬁ)A

/1 1 : . 1 : .
+ (09)(00) (—ZA*DA - ADA" - % b0+ F7F + S0, A0 A+ %zpo—ﬂaw) . (53)

The product @@ is neither a chiral nor the anti-chiral field, since it do not satisfy any of constrains
introduce above. This superfield is a real field. Its highest component #6606 is known as D—
term and it transforms as space-time derivative under SUSY.

3.4 Wess—Zumino model

We want to construct a Lagrangian that is SUSY invariant and renormalizable for chiral and
anti-chiral fields. First, we consider only one superfield ®. The ®®|yy55 term is a kinetic term

OOlyysy = —FA'DA— LADA" — £0,000"0 + F'F + L0, A0 A + S0 0,
= —A'OA + ipatd,) + F*F | (54)

where we discard surface terms.
The term ®P|yp55 is SUSY invariant. However, it is itself a derivative term, so it does not
contribute to the Lagrangian. Consider therefore the SUSY invariant term ®®|gy:

DP|gg = 2AF — i) . (55)
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There is one more renormalizable term, namely @3\99:
<I>3|99 =3A%F — 3AYy . (56)

The higher order terms in chiral fields are not renormalizable. Thus, SUSY invariant Lagrangian
is given by
_ 1 1
L = ®P[yyg5 + (§m¢2|ee +3
where m and A are coupling constants is SUSY invariant. In terms of component fields, the
Lagrangian reads:

AD3gy + h.c.) , (57)

L = —ADA+ " + F*F
+ %(QAF — ) + %(QA*F* — G0) + MAZF — Ay + A2F* — A*g) . (58)
This is the Lagrangian that is SUSY invariant and renormalizable. It is called Wess-Zumino
model. This model was constructed in 1974 by J. Wess and B. Zumino. It was the first four
dimensional supersymmetric model. The fields F' and F* are auxiliary fields, since Lagrangian

does not contain their derivatives. These fields can be eliminated from Lagrangian using the
equation of motion

F = —mA* — \A*? .

In this way we obtain so called 'on-shell” Lagrangian:
- 1 | R— _
L =0,A0"A + a9 — ImA + NA?)? — §mw¢ — Emww — NPy — NAZYY . (59)
More general, with more than one chiral superfield, Lagrangian is

L=, v0d0 + (W[®i][99 + hoc.) , (60)

where the superpotential W is an analytic function of the chiral superfields:

1 1

The quantities m;; and A;j; are some totally symmetric constant coefficients. Lagrangian in
terms of component fields reads

_ 1
L = 0,A;0" Ai+ipio O+ I Fi+ (miinFj—§mij¢i¢j+)\1jkAiAij—/\ijkAilbﬂbk-i‘C-C) . (62)
The previous Lagrangian gives the following equations of motion

10" 0y = mij; + 2 i Ay
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The auxiliary fields F; can be integrated out using equations of motion (63). In that way we
obtain

ﬁ = auAf(?“AZ + z@ﬁ“@uwz — ’mi]’A]’ + )\ijk:AjAk|2
1 1 S v -
- §mz’j¢z’¢j - §mz’j¢ﬂ/1j - AijkAiijk - )\ijkAz' ijk . (64)
The last two terms are Yukawa interaction and we can define effective potential as:

V= |mijAj -+ AijkAjAkF = |Fz‘2 . (65)

3.5 Vector superfield

An irreducble multiplet can be obtained imposing the reality condition

Vi(x,0,0) =V(x,0,0). (66)
This superfield is co—called the vector superfield. It has the following form
Vi(z,0,0) = C(z)+ V20x(z )+ \few) -+ eeM( ) 4+ 00M*(x) + 050, (x)
+ (99)9()\( ) — —0“8@( ( - Ea“aux(x))
1 __
+ 5(69)(6) (D(:U) - 550(:5)) . (67)

The reality condition implies C* = C,v;, = v, and D* = D. A vector multiplet consists of 8
bosonic and 8 fermionic degrees of freedom. B
The canonical dimension of a vector field is one, [v,] = 1. Knowing [0] = [§] = —% implies

V=0, (68)

and subsequently

=0, W=K=5 M=M=l N=F=3 D=2 ()
Let iA be a chiral SF:
iN = f+ V20 + 00F — i(05"9), f — %99(%@@ - i(ee)(éé)m f (70)

The following combination is a vector SF:

i —iAT = 2Ref + V209 + V205 + 00F + 00F* + 2(05"0)0,Im f

1 ~_ (R 1 -
— E(QQ)(@U“@Q@) — ﬁ(%)(ﬁa“augp) — 5(00)(09)DRef. (71)
We define a super-gauge transformation for the vector superfield in the following way:
V'(2,0,0) = V(x,0,0) +i(A(x,0,0) — Al(z,0,0)), (72)
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where A(z,0,0) is a chiral superfield.
Under the super—gauge transformations the components of a vector superfield transform as

C — C+2Ref,

X — Xt
M — M + F|

v,  — v, +0,(2Imf),

A — A\,

D —D. (73)

The fields A and D are gauge invariant, while v, transforms as the usual gauge field with U(1)
gauge parameter 2Imf. This means that the super-gauge symmetry is larger then usual gauge
symmetry.

The super-gauge symmetry can be fixed by the following choice of parameters

—2Ref = C, ©=—X, F=-M. (74)

This gauge choice is known as Wess-Zumino gauge. In the WZ gauge a vector superfield is given
by
_ _ _ 1 _

Vivz = 0" 8v, + (60)(0X) + (00)(ON) + 5(0«9)(«96’)D . (75)
Supersymmetry does not preserve W7 gauge, i.e. a supersymmetric transformation of a vector
superfield in Wess-Zumino gauge gives a superfield which is not in this gauge. However, a suit-
able combination of supersymmetry transformation followed by a super—gauge transformation
preserves the Wess-Zumino gauge. The fields in the vector multiplet are: a vector gauge field
v,, a gaugino, A\, and an auxiliary field, D.

We can perform further transformations that leave us within the WZ gauge with

i\ = ilmf + 00"00,Imf — %(99)(§§)D1m f. (76)
This transformation will not change the conditions C' = y = M = 0, and gives

v, — v, + 0,(2Imf), A— A, D— D, (77)

which is just the ordinary U(1) gauge transformation.
It easy to prove that

Vi £(,0,0) = 2 (00) @8)v, ()" () (78)

Vit (2,0,0) =0, n>3 . (79)
So, we find

1 _ I - 1
e = 14 Vv + 5 Wi = 1+ 00", + (60)(BX) + (B8)(6A) + 5 (69) (96) (D + 52}“@#) . (80)
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3.6 Lagrangian for Abelian gauge theory

In order to construct a kinetic term for a vector superfield, we have to find a supersymmetric
analog of the field strength. Abelian field strength superfields are

1~ - 1 =
W, = —ZDQDQV, Wy = —ZDQDQV . (81)
One can check that both W, and W, are gauge invariant quantities:

1 1
W, = —ZDQDQV — —ZDQDQ(V + A —iAT)
- W, — %sza/\
i - _.
_ . DB
= Wa—;D;D"DaA
i _ . .
= Wa— D <{D5, Do} — DaDﬁ) A
i
= Wy + ZDﬁ{DB, Dy YA
= W+ D’ (2(0")30:0)
1 .
= Wo- 5(0“)a5-8#D5A
= W, (82)

and satisfy DaW, = D, W4 = 0. W, and W}, are a chiral and an antichiral spinorial superfields.
It can be proven that

Wa = Xa(y) + 0aD(y) +i(00)0h,9, 2% (y) — i(0"0)a Fu(y) , (83)
Wai=2aly') + 0aDly") — iees(0"0)° Fun (') — 0B D010 (54)
where F,,, = d,v, — 0,v, . It can be shown that
_ _ 1 1 ~
WWa| = A"\ — 10,05 A + D? — Sy i F Fy (85)

where EW = %EWPUF 7 is the dual tensor of F),. The last term in (85) is a total derivative.

Lagrangian for the pure super Abelian gauge theory is given by

1 1

S
Wew, >:——F‘“’F,, AHON + = D2, 86
£ 4( 50 gt fw Ao S (86)

+ W, we
00

up to a total derivative term. The first term in (86) is Maxwell action.
Next, let us consider a coupling of the Abelian gauge superfield, V' to chiral superfields, ®;
Under the Abelian super-gauge transformation the chiral and antichiral superfields transform as

a3 (87)
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P = NG, (88)
Whereiti is (real) charge of superfield ®;. The term ®;P; is not super-gauge invariant, but the
term ®@,e29%V ®; is:

D295V H, (I)i€2igtiAT(z)ngti(V—l—iA—iAJT)€—2igti/\(z)q>i (89)
= eV P, . (90)

In the WZ gauge only three terms in expression ®;e29%"®, do not vanish:
D;?9Y By g = O;0; + 29,8, Viy 2@ + 29220, ViE, D, (91)

It can be shown that the highest component of ®;e29%V ®; is given (up to total derivative terms)
by

02 WE Q| gosn = FYF; + (D) (DITAY) + inio D) b

+ gtiD|AP — gV2[(N) A + (1N A]] (92)
where we introduce covariant derivatives as
D,;A; = (0, +igtiv,)A; (93)
Dithi = (O + igtiv, )i - (94)
The action is
S = /d433 (‘T)i€2g“vq’i\eeéé + %W“Walee + inWd‘éé + W[®]loo + W@i]\éé) . (95)

The superpotential W (®) has to respect super-gauge symmetry. Now, we can write down the
full Lagrangian in components forms

L =F/F+ (DAY (Dui) + ihio" D} abi + gtiDATA; — V2gL[(PiN) A + (1)) A]]
+1D?* — YF, F"™ + iXa" O, \

ow 1 W *xOW _ 1_0°W 7 7
+Eigx — 2amon Vi T F oxr — 2aareas Vit - (96)

Here, we can use the equations of motion to integrate out auxiliary fields:

ow
b= -
DA}
ow
= —
' DA;
D = —gt;AFA; . (97)
Substituting these results in (96) we obtain the on-shell Lagrangian:
2 _ -
L =- )g—Z\ + (DY AN (D Ai) + iio" Db — § (gt A7 Ai)? — V295[(0:0) Ay + (1)) A;]
—{EW P M N — LT — e bl (98)

In this theory A is a scalar, A is a gaugino and ¢ is a chiral fermion.
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3.7 Super Quantum Electrodynamics

Super QED is a supersymmetric extension of the standard QED. Let &, = (A, ¢, F}) and
O = (A_,¢_,P_) be two chiral superfields with charges ¢ and —g. Under U(1) super—gauge
transformations they transform as follows

O, — O = 2D, (99)
d_ = P =P (100)
The action is given by
_ _ 1
S = /dSZ <c1>+62qv<1>+ +d eV 4 6(2)(0)(1W0‘Wa +md,P_)

L 59 (}lwdwd+mq>+q>_>) | (101)

Note that the mass terms m®_ P, are absent since they are not the super gauge invariant. The
Lagrangian in component form is given by

L=|F+ ‘DMA+|2 + WJFU”DL@JF - \/§Q[(¢+>\>Ai +he]+qALALD
+ |F_[? + D, AP + iy 0" Dyt + V24[(10_N)A* +h.c] — qA"A_D
1 1 - -
+=D* — SF, F" +idd" O A+ m(AyF- + A_Fy — ) + m(ALF* + A Fr — ) .

2 4
(102)
Substituting the equations of motion
Py =-mAZL (103)
D= —qAlA +qA"A_ (104)
into Lagrangian in (102) we obtain the on-shell Lagrangian:
1 - _ _
L= =1 Ful™ +iXo" A+ i 0" Dl + it 0" Dytp_ + | DAL + DA
q * * * * T
— LA A AT AL - (A At A — () + 5,0 )
— V24I AL (BN AL — (0 M)A — (B N)A ], (105)
where
D =0,+iqA, . (106)
We introduce Dirac spinor for matter fields:
(w-i—)a )
U = Zt/a 107
(1 (107



and the Majorana spinor for gaugino field

Mt = ( e ) | (108)

In terms of Dirac and Majorana spinors Lagrangian (105) reads

1 : - _
L= —1FuF"+ %)\Myﬂau)\M +iUyP DT — mU
q
+ DA+ [DuA = m?(JAL] + A ) = S (1AL + [AP)°
— V2q(A T — A ATk +cc) . (109)

3.8 Non-Abelian Super—Yang-Mills theories

In the previous section we discussed the supersymmetric U(1) gauge theories. Now, we generalize
the Abelian symmetry to the non—Abelian one. Let us consider a simple connected group G.
The hermitian generators of G are 7% and they satisfy

[T, T = ifTe | (110)

where f% are structure constants. Chiral superfields transform under rigid transformations as
follows
CI)[ = eXp(—igAaTa)]JCI)J s

where A® are constant real parameters and ¢ is a coupling constant. The kinetic term ®;®; is
invariant under the rigid transformations.

To localize this symmetry in the superspace, the parameters A® have to become chiral func-
tions. The superfields, ®; and ®; transform under gauge transformation in the following way

CI)/[ = eXp(—igA)UCDJ, (T),] = é.] exp(—z’gAT)JI, (111)

where A = 2gA%(z,0,0)T?, AT = 2gA% (x,0,0)T* are the chiral and antichiral superfields. The
term ®;®; is not gauge invariant. To recover invariance we introduce a vector (or gauge or
Yang-Mills) superfield V' = 2¢gV*T“. It is a Hermitian matrix transforming under the adjoint
representation of G. In order for the term ®;(e");;®; to be invariant under super-gauge trans-
formation, the super—gauge transformation of the vector superfield has to be given by

! s -i- .
€+V —e A 6+Ve+’LA ) (112)

Writing V' =V + §V, where §V is an infinitesimal change of vector superfield in the first order
in A, we obtain

1 1
VOV eV =5V + 5 (VOV +0VV) + 6(5VV2 +VSVV +VE3V) + ... (113)

On the other hand, from (112) it follows
VTV eV = eVih —iATe” = iA — iAT + ViA — ATV + %VQA - %ATW Yo (114)
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To solve these equations we assume that oV is a expansion in powers of V'
oV =oVO 16V 1 5v@ 4 (115)

The term 6V ™ is n—th order in power of the vector superfield.
Comparing (113) and (114) we find

VO = (A —AT),

VO = LA+ AT
V@ = %Wﬂ%A—MH. (116)
Collecting these terms together we obtain
SV = (A~ AN + LVA AT+ SVIVA - AT (117)
or in component notation
ST = (A = A = gf V(A + AT = L PV A A OV (1)

It can be shown that we can impose the Wess-Zumino gauge
_ . 1 .
Vivz = (00"0)v,, + (00)(ON) + (60)(6)) + 5(«99)(99)D . (119)

We use the notation v, = 2gviT*, D = 2gD*T"... where v}, are the gauge fields. The Wess-
Zumino gauge does not fix super—gauge symmetry completely. The super—gauge transformations
determined by

iAzﬂmf+MW@@hﬁ—iW@@@hﬁ (120)

preserve WZ gauge. This residual symmetry corresponds to usual gauge symmetry. The vector
superfield transformation is given by:

M@Z:MA—AU+%WwLA+AW. (121)
To find the Lagrangian for super Yang-Mills fields we introduce two new superfields

Wo= D% (e ¥ Doe™), Wa=+5D? (" Dae™") . (122)

It is clear that W, and W, are chiral and antichiral superfields, respectively. The superfield
strength W, can be expanded in V:

1= 1= I =
Wy = _ZDQDaV - gDQ[DaVa V]- ﬁDQHDaM VI, VI+.... (123)
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In the Abelian case this expression reduces to W, = —iDQDaV, as we expected. It can be
shown that W, transforms covariantly under the super—gauge transformations:

W, — e M Woet (124)
In the Wess-Zumino gauge we have
W, = —iDQDaVWZ - éDQ[DavWZ, Vivz) - (125)
Finally, we arrive at W,, = 2gWJT*, where
Wa = Xa(y) + 0D (y) +i00(0" DuA" (y))a — (0" 0)a F, (y) - (126)

The term Tr(W,W*?) is super—gauge and Lorentz invariant. Its 80 component is invariant under
supersymmetry. Therefore, the Lagrangian for the super-non-Abelian gauge field is

1 o
L= T (W“Wa W e )) 127
1692k ! 99+ 96 (127)

1 o
=~ Fp P4 +iN 0" (D))" + 5 D" D", (128)

where

(DA = 9 — gfeubxe

a . a a abc, b ¢
F,uzl - a,uvr/ o al/U,u - gf Um Uy

and the constant k is determined by Tr(T*T?) = $k6 .

Lagrangian (128) describes super-Yang-Mills theory without matter fields. The Lagrangian
for matter sector is given by

Lo = BV D n W(cp)] n W@)‘” , (129)

06

(66)(60)

where the superpotential W (®) is a gauge invariant quantity i.e. it belongs to a singlet repre-
sentation of G. B B
In the Wess-Zumino gauge the kinetic term for matter fields, ®e"® = & I(ev) 179 is given
by
_ _ _ 1-
PP = 0P + VP + 5<1>v2<1>. (130)
Its D-component is
PeV O

woyaa = F+ (D" A)!(D,A) — " Dyab + gA*DA — V2gA* (YA) — V2g(bN) A, (131)

where:

DA = (8, +igo"T*)A,  Dyib = (8, +igoT). (132)
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Let us stress that the fields A, and F' transform under fundamental, while D, A and v,, under
adjoint representation of G. Adding all terms together we obtain the off-shell Lagrangian:

L= —iF5F™ —iXe"D,\" + (D,A)(D"A) — ipo" Dyt
+gATDYT* A — /2 NT A% — 290 T8 A,
+ (FIS—X - %%wsz + h.c.)
+5 DD + FF (133)
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