Lecture 2 T Braneworld
Universe




Relativistic Particle Action

PARTICLE is a 0+1-dimdimensional object the dynamics
of which in d+1-dimensional bulk is described by the
relativistic pointlike-particle action
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Strings and (Mem)Branes

STRING is a 1+1-dimdimensional object the dynamics of
which in d+1-dimensional bulk is described by the
Nambu-Goto action (generalization of the relativistic
particle action)

Sstring = _Tﬁd d ‘i/ d'et( gmlly)
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G,_, T metric in the bulk string shit

X271 coordinates in the bulk;
sOr Ui timelike coordinate on the string sheet
sli 0 1 spacelike coordinate on the string sheet



p-BRANE Is a p+1-dim. object that generalizes the
concept of membrane (2-brane) or string (1-brane)

Nambu-Goto action for a 3-brane embedded Iin a
4+1 dim space-time (bulk)
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G,, 7 metric in the bulk

3 Xa7i coordinates in the bulk
Xa a,b=0,1,2,3,4
X¢ 1 coordinates on the brane
£,3=0,1,2,3

01 brane tension



Braneworld universe

Braneworld universe Is based on the scenario in which

matter is confined on a brane moving in the higher
dimensional bulk with only gravity allowed to propagate
In the bulk.

N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429 (1998)
|. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett.




First Randall-Sundrum model (RS 1)

RS | was proposed as a solution to the hierarchy
problem, in particular between the Planck scale Mg, ~
10'° GeV and the electroweak scale M, ~ 103 GeV

RS | is a 5-dim. universe with AdS; geometry containing
two 4-dim. branes with opposite brane tensions
separated in the 5" dimension.

The observer is placed on the negative tension brane
and the separation is such that the strength of gravity on
0 b s er brane id equal to the observed 4-dim.
Newtonian gravity.



Observers reside on the negative tension brane at y=l
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The coordinate position y=I of the negative tension brane
serves as a compactification radius so that the effective
compactification scaleis m =/l



The conventional approach to the hierarchy problem is to assume n
compact extra dimensions with volume V
If their size is large enough compared to the Planck scale, i.e., if

m~1/V" < M,

such a scenario may explain the large mass hierarchy between the
electroweak scale Mg, and the fundamental scale M of 4+n gravity.
In the simplest case, when the 4+n dim. spacetime is a product of a 4-
dim. spacetime with an n-dim. compact space, one finds

M2 =MV ~M2"/ ¢

In this way the fundamental 4+n scale M could be of the order of Mg,
If the compactification scale satisfies

m/MEWN(MEW/ M P|)2/n

Unfortunately, this introduces a new hierarchy €. << Mgy,



Another problem is that there exist a lower limit on the fundamental
scale M determined by null results in table-top experiments to test
for deviations from NewWtldmlhese | aw
experiments currently probe sub-millimeter scales, so that

VY ¢ 0. 1mm— _151 \ 2 ié5(106 TeV for nzl:
107 TeV i 3TeV for n=2

Long et al, Nature 421 (2003).

Stronger bounds for brane-worlds with compact flat extra dimensions
can be derived from null results in particle accelerators and in high-
energy astrophysics

M. Cavagli'a, A Bl ac kBr&he Preducaonih TeVGr avi ty: A Revi ew
Int. J. Mod. Phys. A 18 (2003).

S. Hannestad and G.Raffelt, nStri ng&nar Neumros on Large
Phys. Rev. Lett. 88 (2002).



In contrast, RS brane-worlds do not rely on

compactification to localize gravity at the brane, but on the
curvature of the bul k (Awarp
prevents gravity from o0l eaki
low energies is a negative bulk cosmological constant

6

I = = Bk2 a- curvature radius of AdS,
S (2 corresponding to the scale k=1/ a

stcacts to Nsqueezeo the g brane. f

One can see this in Gaussian normal coordinates X& = (x®,y)
on the brane at y = 0, for which the AdS; metric takes the form

ds, = G, dX dX =&, d% dk -d

Warp factor



The Planck scale is related to the fundamental scale as

I 3
Mg, = 2M 3 2 dy —'Vli (1 &™)
0
So that My, depends only weakly on | in the limit of large Ki.
However, any mass parametermson t he obraner ve
In the fundamental 5-dim. theory will correspond to the
physical mass

m=¢e"“m

If kl is of order 10 7 15, this mechanism produces TeV physical
mass scales from fundamental mass parameters not far from
the Planck scale 101° GeV. In this way we do not require large
hierarchies among the fundamental parameters

m,, k, M, £ =1/l



Second Randall-Sundrum model (RS II)

In RSII observers reside on the positive tension brane at y=0 and the
negative tension brane is pushed off to infinity in the fifth dimension.
We shall shortly demonstrate that in this model the Planck mass scale
IS determined by the curvature of the 5-dimensional space-time 1/k
and the 5-dim fundamental scale M

M3
Tk

The inverse curvature k serves as the compactification scale and
hence the model provides an alternative to compactification.

M2 =M 32ﬁs My =



Second Randall-Sundrum model (RS II)

RS Il was proposed as an alternative to compactification of extra
dimensions. If extra dimensions were large that would yield
unobserved modificati on oHperilletalt on 0

bound on the volume of n extra dimensions Vl/n ¢ 0. 1mm
Long et al, Nature 421 (2003).

RSII brane-world does not rely on compactification to localize gravity at

the brane, but on the curvature of the bulk ( A w a rcgmeattificationo.)
The negative cosmological constants®act s t o fisqueeze
gravitational field closer to the brane. One can see this in Gaussian

normal coordinates on the brane aty = 0, for which the AdS; metric

takes the form

ds, = G, dX dX =&, d% dk -d

warp factor
L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)



NSI dednesso

In the original RSII model one assumes the Z, symmetry

z4 Zbr/z or Y- Yo 2 Yor - Y

so the region 0<z €z is identied with Z,. ¢ z < withthe observer brane
at the fixed point z = z,,. The braneworld is sitting between two patches of
AdS;, one on either side, and is therefore dubbed i t ¥ 0 d dnccantrast, in
thei o rseé d BSllanodel the region0<z €z is simply cut off.



As before, the 5-dim bulk is ADS; with line element

ds, = G, dX dX =&, d% dk -d




In RSII observers reside on the positive tension brane at
y=0 and the negative tension brane is pushed off to
Infinity in the fifth dimension.




AdS bulk is a space-time with negative cosmological

constant: 6
|_(5) =

/? a- curvature radius of AdS,

Various coordinate representations:

Fefferman-Graham coordinates

ds;, = G, dX’ dX ——( g, dx7dx”

Gaussian normal coordinates

d, = e2Yh,, d¥ d¥ - df

-dy

z=(¢e"



Schwarzschild coordinates (static, spherically symmetric)

2

ds., = f(ndt P°d 2
S5 = (1) f(r) p

r’ (" sinfvk ¢
f(r)— % - dwf =dc? F=22d A

+1 closed spherical
k=¢{ 0 open flat 8G,M,,
. =
-1 open hyperbolic 3o(?

Relation with z
r: (> k */%+4 y44)

2 22 2 16 (2




Derivation of the RSII model
See Appendix of N.B., Phys. Rev. D 93,

066010 (2016) arXiv:1511.07323

RS model is a 4+1-dim. universe with AdS; geometry containing two
3-branes with opposite brane tensions separated in the 5" dimension.

S= 3wk tTew v

The bulk action is given by
a R(S)
Sk = nd5 X/ det G - L

where s Is the negatlve bulk cosmologlcal constant related to
the AdS curvature radius as

The Gibbons-Hawking boundary term is given by an integral over the

brane hypersurface £
Se = J/ -det hK

pss



where the quantity K is the trace of the extrinsic curvature tensor
K., defined as

— CIAd
Kab _ hahb I,-]ol;c

where n, is a unit vector normal to the brane pointing towards
Increasing z, h_, Is the induced metric

h, =G, N, ab 6123
and h=det h, ,is its determinant, £,3=0,1,2,3

The brane action for each brane is given by the Nambu-Goto

action S = Sﬁfx\/ dethm

Observers reside on the positive tension brane at y=0. The
observer total action (including matter) is

Sor |y:O: S ﬁd4 X\/_h 'IfﬁX/_HLFnatt
S S




The basic equations are the bulk field equations outside the brane
1
REL?)) o §R(5)Gab — A5Gab (24)
and junction conditions
(KL — 0L K2)) = 87Gi(o6l: + T) (29)

where the energy momentum tensor T¢,=diag (} , -p,-P,-p)

describes matter on the brane and [[f]] denotes the discontinuity of a
function f(z) across the brane, i.e.,

[F(2)) = m (f(zur +€) — £z — €)

0

To derive the RSII model solution it Is convenient to use Gaussian

normal coordinates x, = (X, , y) with the fifth coordinate y related to the
Fefferman-Graham coordinate zby z=a ¥ 4

In the two-sided version with the Z, symmetryy -y, Z Yy, -y one
identifies the region -B <y <y, with y,, < y .<Fwithddt loss of
generality we maagnegy,t=0observer 0s



We start with a simple ansatz for the line element
dsls) = 02 (y) gy ()dz" dz” — dy

Where we assume that y vanishes at y= Band y (0)=1. Then one finds
the relevant components of the Ricci tensor

I
R — _4%, R =0,
(26)
R = Ry + (307 + 90" g
and the Riccli scallarR Wz o
(5) _ v Y ¥ (27)
R —w2+12w2+8w,

where the prime Njenotes a derivative with respect to y . Using this
the action may be brought to the form

Slgl = 8771G5 /d‘lx\/__g/dy [_gw TN

+692(8')? — A4 + Saulg] + Sl

(28)



The extrinsic curvature is easily calculated using the definition and the
unit normal vector n = (0; O; 0; O0; 1). The nonvanishing components

K;u/ — nu;r/ — _Ffbyna — lbw,gw/ (29)

The fifth coordinate may be integrated out if y Y O sufficiently fast as
we approach y = D

The functional form of y is found by solving the Einstein equations (24)
In the bulk. Using the components of the Ricci tensor (26) and Ricci

scalar (27) we obtain  p WZ
Q—W +6W —|—A(5) =0 (30)
1 2
Ry = 5 Rgu = (307 + 300" + AO9?) g, (31)

Combining (30) and (31) we find (Exercise No 10)

y —a Y where g:\/ 6/ P




With this solution, the metric (12) is AdS; in normal coordinates
Equation (27) reduces to the four-dimensional Einstein equation in
empty space 1

R -=~Rg, 9
mn 2 gmn

This equation should follow from the variation of the action (28) with
L. = O after integrating out the fifth coordinate. For this to happen
It IS necessary that the last three terms in square brackets are
canceled by the boundary term and the brane action without matter.
Using (29) one finds that the integral of the second term is
canceled by the Gibbons-Hawking term. Then, the integration over
y fom 0to D yields

~ e o 3 g
=nd X - R+~
Skt TN gl' 320G, 8 PG, j (32)



For the two branes at y=0 and y=Il we find
ind ind | —

gmnly o Y Imn _e-2klg |

y I=

The total brane contribution is

N LR

the last term in (32) is canceled by the two brane actions in the limit
| - ©
The cancellations will take place if

3y (33) | 1, one-sided RSII,
SrGsl 77 2, two-sided RSIL.

g = 0p =

This is the RSII fine tuning condition



lIn this way, after integrating out the fifth dimension, the total effective
four-dimensional action assumes the form of the standard Einstein-
Hilbert action without cosmological constant

1 s, —{( R
S_SWGNfdx g( 2)

where Gy is the Newton constant defined by

1 " 1 one-sided
— g rP 2yl dy — @ g {
Gy 0 2G,

Using this the constant U, in (33) can be expressed as
3
5,1 39 _ :
80G.( 8 B/

2 two-sided




It may be shown that the fine tuning condition (33) follows directly
from the junction conditions (25)

Exercise No 11: Derive the RSII fine tuning condition (33) from
the junction conditions

K} — 0y K] = 8nG5(0d), + T7)

for a brane with no matter at y=0 and the metric

ds, = €2V, d¥ d¥ - df

N.B., PRD 93, 066010 (2016) , arXiv:1511.07323



RSIlI Cosmology i Dynamical Brane

Cosmology on the brane is obtained by allowing the brane to
move Iin the bulk. Equivalently, the brane is kept fixed at y=0
while making the metric in the bulk time dependent.




Simple derivation of the RSII braneworld cosmology

Following J. Soda, Lect. Notes Phys. 828, 235 (2011) arXiv:1001.1011
See also Appendix in N.B., PRD 93, 066010 (2016) , arXiv:1511.07323

Consider a time dependent brane hypersurface E defined by
r-a() 9
iIn AdS-Schwarzschild background. The normal to E is

n, < 0,(r—a(t)) =(—0a,0,0,0,1)

Using the normalization G”'h_n, = 4 one finds the nonvanishing
components

fl/2ata — f1/2
NP @) TP @)

where 2 /2
fla) =z +K—p— (34)



Then, the induced line element on the brane is

ds, = ri(yde -2()d §

(ha)*
f(a)

The junction conditions on the brane with matter may be written as

where n° = f(a)

87TG5
KIJJV"r:a,—e - 3 [(0 + T)g/U/ o STHV)]
Y
The ¢ ¢component gives
f3/2 87TG5

(f2 — (0ra)?)1/2 — 3y (04 p)a

Exercise No 11: Derive the ¢ ¢-component of
the junction condition



This may be written as

(8ta,)2+ ;1

n?a? = a? (20}

(0 +p)°

L Hubble expansion rate on the brane

Substituting for f the expression (34) we obtain

k(o4 p)? 1 pl?

Hiq + — = — + —
RSLL 2 2¥er 2 at
2
where H2 ... — M
RSII n2aq2

Employing the RSII fine tuning condition =0, we find the effective
Friedmann equation



The Friedmann equation on the brane is modified

kK 8 ,@N %4 QBM

2
HRSII T 2

_ 07 4
a 3

. a
A
Quadratic deviation from

the standard FRW.
Decays rapidly as ~ a®in
the radiation epoch

-0:07"

dark radiation s
due to a black hole in the bulk T should not

exceed 10% of the total radiation content in
the epoch of BB nucleosynthesis

RSII cosmology is thus subject to astrophysical tests



Dynamical Brane as a Tachyon

Consider an additional 3-brane moving in the 5-d bulk
spacetime with metric

ds;, =y *(y) d""dx Ux 7 dy




The points on the brane are parameterized by XM = (Xm’ Y( >§)
The 5-th coordinate Y is treated as a dynamical field that depends on x.
The brane action is

Sy =- x| detdy

Using the induced metric

gi;i: Jsymn X,Mlg(,N ,7:)/2(Y) g 7,y Y (35)

one finds

Sor:-Sﬁj“@y“(Y)(l -y Q’”)@X)m (36)



Exercise No 12:
(a)Prove that the following relation holds

det(gmn_ azu H )n: (1 B é )detg
for a general metric g, ,, unit timelike vector u, and (P< 1
Hint: use a comoving reference frame.

(b) Use (a) to derive the induced metric (36)



Changing Y to anew field g = pflY/ }Y) we obtain the
effective brane action

S =- ' W/ -0

Where we have defineed

C((y\/ 4, q

c( §=—-
y (Y)
This action is of the Born-Infeld type and describes a tachyon with
potential
— 4
Vig= 49 7¢)

Exercise No 13: Show thatV(g) " & in the AdS; background
metric



Tachyon as CDM

The effective Born-Infeld Lagrangian

L= v(g)y1 8”q ¢

for the tachyon field d describes unstable modes in string
theory

A. Sen, JHEP 0204 (2002); 0207 (2002).

A typical potential has minima at g= ° . Of particular
interest is the inverse power law potential V™~ g ".

For n > 2, as the tachyon rolls near minimum, the pressure

pl L -0 veryquickly and one thus apparently gets
pressure-less matter (dust) or cold dark matter.

L.R. Abramo and F. Finelli, PLB 575(2002).



AdS/CFT and Braneworld Holography

AdS/CFT correspondence is a holographic duality between
gravity in d+1-dim space-time and quantum CFT on the d-dim
boundary. Original formulation stems from string theory:

Equivalence of 3+1-dim
N =4 Supersymmetric YM Theory

and string theory in AdS:2® S

Examples of CFT.:
guantum electrodynamics,
(Blonfc()jrmal Yang Mills gauge theory,
oundary massless scalar field theory,
at . :
massless spin Y2 field theory




Why AdS?

Ant i de Sitter space I s a maxi mall
equations with negative cosmological constant.
In 4+1 dimensions the symmetry group is AdS:[ SO(4,2)

The bulk metric may be represented by (Fefferman-Graham coordinates)

62
dy = G, dX dX =3 ( g, d% d% -d

So there is a boundary at z=0. A correspondence between gravity in
the bulk and the conformal field theory (CFT) on the boundary of AdS
may be expected because the 3+1 boundary conformal field theory is
iInvariant under conformal transformations: Poincare + dilatations +
special conformal transformation = conformal group [ SO(4,2)

It is sometimes convenient to represented the metric in Gaussian normal
coordinates
— 5 2ky
ds;, = €% g, (3} d¥ dX - &§

Warp factor



In the second Randall-Sundrum (RS Il) model a 3-brane is located at a
finite distance from the boundary of AdS..

Foliation of the bulk:

RSI| brane
at z=z,,

1
J
1
|
1
1
1
1
|
t




In the original RSII model the region 0< z €7 is identied with z ¢ z <
with the observer brane at the fixed point z = z,,. The braneworld is sitting
between two patches of AdS;, one on either side, and is therefore dubbed
At wo ddndcaontrast,inthei o rsa d BRSlldnodel the region0< z ¢z,
IS simply cut off.

1-sided and 2-sided versions are equivalent from the point of view of an
observer at the brane. However, in the 1-sided RSII model, by shifting the
boundary in the bulk from z=0to z = z,,, the model is conjectured to be
dual to a cutoff CFT coupled to gravity, with z = z_ providing the cutoff. This
connection involves a single CFT at the boundary of a single patch of AdS..
In the 2-sided RSII model one would instead require two copies of the CFT,
one for each of the AdS; patches.

M. J. Duff and J. T. Liu, Class. Quant. Grav. 18 (2001); Phys. Rev. Lett. 85, (2000)



In the RSII model by introducing the boundary in AdS; at
z =z, instead of z= 0 the model is conjectured to be dual to a cutoff

CFT coupled to gravity, with z = z,, providing the  cutoff (corresponding
to the UV catoff of the boundary CFT)

The on-shell bulk actionis  divergent because physical distances
diverge at z=0

— A0 2) 4 L4)
gmn_ mn+229( mn-z d mn-}



We regularize the action by placing the RSII brane near
the AdS boundary, i.e., at z = U§ k<1, so that the induced
metric is

k=9 =



We obtain the renormalized boundary action by adding
countertermsand taking the | 1 mit

STIg?=lim( g ¢ +Blh 451 h [9

The necessary counterterms are

Hawking, Hertog and Reall, Phys. Rev. D 62 (2000), hep-th/0003052



